

Chris Agia

cagia@cs.stanford.edu
www.chrisagia.com
github.com/agiachris
linkedin.com/agiachris

EDUCATION

Stanford University Doctor of Philosophy in Computer Science Advisors: Prof. Jeannette Bohg, Prof. Marco Pavone Co-founder & President, Canadian Student Association at Stanford. Lead Organizer, Stanford AI Salon	2021 – Present
University of Toronto Bachelor of Applied Science in Engineering Science, Robotics Advisor: Prof. Florian Shkurti. Graduation with Honors, Dean's Honor List 2018 – 2021	2016 – 2019, 2020 – 2021

SELECTED RESEARCH EXPERIENCES

Interactive Perception and Robot Learning Lab , Stanford University Graduate Researcher advised by Prof. Jeannette Bohg Topics: (focus) robot data curation [Site], task and motion planning with learned skills [Site] and large language models [Site, Site, Site]; (involved) imitation learning, deep reinforcement learning, constrained optimization	Stanford, CA, USA 2022-01 – Present
Autonomous Systems Lab , Stanford University Graduate Researcher advised by Prof. Marco Pavone Topics: (focus) reliability for robot imitation learning [Site, Site], foundation models for robot safety [Site, Site, Site Site]; (involved) uncertainty quantification, out-of-distribution detection, deep offline reinforcement learning	Stanford, CA, USA 2022-03 – Present

RESEARCH EXPERIENCES

FAIR Embodiment & Actions , Meta Research Scientist Intern advised by Dr. Krishna Jatavallabhula and Dr. Franziska Meier Topics: large-scale world modeling for robotics	Menlo Park, CA, USA 2025-06 – Present
NASA Jet Propulsion Laboratory , California Institute of Technology Visiting Researcher advised by Dr. Issa Nesnas and Dr. Saptarshi Bandyopadhyay Topics: autonomy for deep space exploration [Site]; Section 347: mobility and robotic systems	Pasadena, CA, USA 2023-06 – 2023-09
Stanford Vision and Learning Lab , Stanford University Graduate Researcher advised by Prof. Jiajun Wu Topics: neuro-symbolic models for AI task planning	Stanford, CA, USA 2021-09 – 2022-02
Robot Vision and Learning Lab , Vector Institute & University of Toronto Undergraduate Researcher advised by Prof. Florian Shkurti Topics: robot task planning in structured world models with graph neural networks [Site]	Toronto, Canada 2020-05 – 2021-05
Mobile Robotics Lab , MILA & McGill University Research Intern co-supervised by Prof. Gregory Dudek and Prof. David Meger Topics: learning for visual SLAM [Paper], visual representations for reinforcement learning [Paper]	Montreal, QC, Canada 2020-01 – 2020-05
Noah's Ark Lab , Huawei Research Canada Deep Learning Research Intern, perception and localization with Dr. Bingbing Liu Topics: 3D semantic scene reconstruction [Paper], segmentation and semantic SLAM [Paper]	Markham, ON, Canada 2019-05 – 2020-05
Autonomous Systems and Biomech. Lab , University of Toronto Research Intern supervised by Prof. Goldie Nejat Topics: sim2real transfer for robot reinforcement learning [Paper]	Toronto, ON, Canada 2018-05 – 2018-08

INDUSTRY EXPERIENCES

Mixed Reality and Robotics , Microsoft Software Engineering Intern on the Scene Understanding and Data Teams (HoloLens)	Redmond, WA, USA 2021-05 – 2021-08
---	---------------------------------------

Cloud, Google

Software Engineering Intern building ABI simulators with the Istio Networking Team

San Francisco, CA, USA

2020-05 – 2020-08

HONORS AND AWARDS

Clear Ventures Deeptech Fellowship

2023

Awarded to promising PhD candidates and post-docs that aspire to build deep tech companies

Stanford School of Engineering Fellowship, Computer Science

2021

Awarded to outstanding students pursuing doctoral degrees in computer science and engineering

Ontario Engineering Competition

2019

Awarded first prize at Toronto's district and Ontario's provincial programming competitions

NSERC Undergraduate Student Research Award

2018

Awarded to undergraduate science and engineering students on the basis of research aptitude

President's Scholarship Program

2016

Awarded to top engineering candidates pursuing studies at the University of Toronto

PUBLICATIONS

PREPRINTS

[1] S. Sirigiri, C. Agia, N. de Lara, F. Shkurti, and F. Ramos, “Diversity you can actually measure: A fast, model-free diversity metric for robotics datasets,” 2026, In submission.

REFEREED CONFERENCE PAPERS

[1] F. Marchiori, R. Sinha, C. Agia, A. Robey, G. J. Pappas, M. Conti, and M. Pavone, “Preventing robotic jailbreaking via multimodal domain adaptation,” 2026, Accepted. [Online]. Available: <https://arxiv.org/pdf/2509.23281.pdf>.

[2] C. Agia, R. Sinha, J. Yang, R. Antonova, M. Pavone, H. Nishimura, M. Itkina, and J. Bohg, “Cupid: Curating data your robot loves with influence functions,” in *Proceedings of The 9th Conference on Robot Learning*, ser. Proceedings of Machine Learning Research, vol. 305, PMLR, 2025, pp. 2907–2932. [Online]. Available: <https://arxiv.org/abs/2506.19121>.

[3] M. Ganai, R. Sinha, C. Agia, D. Morton, and M. Pavone, “Real-time out-of-distribution failure prevention via multi-modal reasoning,” in *Proceedings of The 9th Conference on Robot Learning*, ser. Proceedings of Machine Learning Research, vol. 305, PMLR, 2025, pp. 283–308. [Online]. Available: <https://arxiv.org/abs/2505.10547>.

[4] J. Kwok, C. Agia, R. Sinha, M. Foutter, S. Li, I. Stoica, A. Mirhoseini, and M. Pavone, “Robomonkey: Scaling test-time sampling and verification for vision-language-action models,” in *Proceedings of The 9th Conference on Robot Learning*, ser. Proceedings of Machine Learning Research, vol. 305, PMLR, 2025, pp. 3200–3217. [Online]. Available: <https://arxiv.org/abs/2506.17811>.

[5] Y. Huang, C. Agia, J. Wu, T. Hermans, and J. Bohg, “Points2plans: From point clouds to long-horizon plans with composable relational dynamics,” in *2025 IEEE International Conference on Robotics and Automation (ICRA)*, 2025. [Online]. Available: <https://arxiv.org/abs/2408.14769>.

[6] C. Agia, R. Sinha, J. Yang, Z. Cao, R. Antonova, M. Pavone, and J. Bohg, “Unpacking failure modes of generative policies: Runtime monitoring of consistency and progress,” in *Proceedings of the 8th Conference on Robot Learning (CoRL)*, ser. Proceedings of Machine Learning Research, vol. 270, PMLR, 2024, pp. 689–723. [Online]. Available: <https://arxiv.org/abs/2410.04640>.

[7] J. Thumm, C. Agia, M. Pavone, and M. Althoff, “Text2interaction: Establishing safe and preferable human-robot interaction,” in *Proceedings of the 8th Conference on Robot Learning (CoRL)*, ser. Proceedings of Machine Learning Research, vol. 270, PMLR, 2024, pp. 1250–1267. [Online]. Available: <https://arxiv.org/abs/2408.06105>.

[8] M. Bazzi, A. Shahid, C. Agia, J. Alora, M. Forgione, D. Piga, F. Braghin, M. Pavone, and L. Roveda, “Robomorph: In-context meta-learning for robot dynamics modeling,” in *International Conference on Informatics in Control, Automation and Robotics*, 2024. [Online]. Available: <https://arxiv.org/abs/2409.11815>.

- [9] R. Sinha, A. Elhafsi, C. Agia, M. Foutter, E. Schmerling, and M. Pavone, “Real-time anomaly detection and reactive planning with large language models,” in *Robotics: Science and Systems*, Outstanding Paper Award, 2024. [Online]. Available: <https://arxiv.org/abs/2407.08735>.
- [10] DROID Dataset Team, “Droid: A large-scale in-the-wild robot manipulation dataset,” in *Robotics: Science and Systems*, 2024. [Online]. Available: <https://arxiv.org/abs/2403.12945>.
- [11] Open X-Embodiment Collaboration, “Open X-Embodiment: Robotic learning datasets and RT-X models,” in *2024 IEEE International Conference on Robotics and Automation (ICRA)*, Best Paper Award, 2024. [Online]. Available: <https://arxiv.org/abs/2310.08864>.
- [12] C. Agia, G. C. Vila, S. Bandyopadhyay, D. S. Bayard, K. Cheung, C. H. Lee, E. Wood, I. Aenishanslin, S. Ardito, L. Fesq, M. Pavone, and I. A. D. Nesnas, “Modeling considerations for developing deep space autonomous spacecraft and simulators,” in *IEEE Aerospace Conference (AeroConf)*, 2024. [Online]. Available: <https://arxiv.org/abs/2401.11371>.
- [13] C. Agia, T. Migimatsu, J. Wu, and J. Bohg, “Stap: Sequencing task-agnostic policies,” in *2023 IEEE International Conference on Robotics and Automation (ICRA)*, 2023, pp. 7951–7958. DOI: 10.1109/ICRA48891.2023.10160220. [Online]. Available: <https://arxiv.org/abs/2210.12250>.
- [14] C. Agia, K. M. Jatavallabhula, M. Khodeir, O. Miksik, V. Vineet, M. Mukadam, L. Paull, and F. Shkurti, “Taskography: Evaluating robot task planning over large 3d scene graphs,” in *Proceedings of the 5th Conference on Robot Learning (CoRL)*, ser. Proceedings of Machine Learning Research, vol. 164, PMLR, 2022, pp. 46–58. [Online]. Available: <https://arxiv.org/abs/2207.05006>.
- [15] R. Cheng, C. Agia, F. Shkurti, D. Meger, and G. Dudek, “Latent attention augmentation for robust autonomous driving policies,” in *2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2021, pp. 130–136. DOI: 10.1109/IROS51168.2021.9636449.
- [16] R. Cheng, C. Agia, Y. Ren, X. Li, and L. Bingbing, “S3cnet: A sparse semantic scene completion network for lidar point clouds,” in *Proceedings of the 2020 Conference on Robot Learning (CoRL)*, ser. Proceedings of Machine Learning Research, vol. 155, PMLR, 2021, pp. 2148–2161. [Online]. Available: <https://arxiv.org/abs/2012.09242>.
- [17] R. Cheng, C. Agia, D. Meger, and G. Dudek, “Depth prediction for monocular direct visual odometry,” in *2020 17th Conference on Computer and Robot Vision (CRV)*, IEEE Computer Society, 2020, pp. 70–77.

REFEREED JOURNAL PAPERS

- [1] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion: From natural language instructions to feasible plans,” *Autonomous Robots, Special Issue: Large Language Models in Robotics*, 2023. DOI: 10.1007/s10514-023-10131-7. [Online]. Available: <https://arxiv.org/abs/2303.12153>.
- [2] A. Elhafsi, R. Sinha, C. Agia, E. Schmerling, I. A. D. Nesnas, and M. Pavone, “Semantic anomaly detection with large language models,” *Autonomous Robots, Special Issue: Large Language Models in Robotics*, 2023. DOI: 10.1007/s10514-023-10132-6. [Online]. Available: <https://arxiv.org/abs/2305.11307>.
- [3] Y. Ren, B. Liu, R. Cheng, and C. Agia, “Lightweight semantic-aided localization with spinning lidar sensor,” *IEEE Transactions on Intelligent Vehicles*, vol. 8, no. 1, pp. 605–615, 2021. DOI: 10.1109/TIV.2021.3099022.
- [4] H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. Agia, and G. Nejat, “A sim-to-real pipeline for deep reinforcement learning for autonomous robot navigation in cluttered rough terrain,” *IEEE Robotics and Automation Letters*, vol. 6, no. 4, pp. 6569–6576, 2021. DOI: 10.1109/LRA.2021.3093551.

THESIS PAPERS

- [1] C. Agia and F. Shkurti, “Contextual graph representations for task-driven 3d perception and planning,” Undergraduate Dissertation, University of Toronto, Toronto, ON, 2021. [Online]. Available: https://drive.google.com/file/d/1LjTdgwuiJa-gIiVbbqj9vh-qoEZgqkb_/view?usp=sharing.

INVITED TALKS

UT Austin.	Data-Centric Understanding of Policy Performance with Influence Functions (YouTube)	2025-10
IEEE CASE.	Data-Centric Understanding of Policy Performance with Influence Functions	2025-08
TRI.	Data-Centric Understanding of Policy Performance with Influence Functions	2025-07
NASA University Leadership Initiative.	Unpacking failure modes of generative policies	2024-10
SystemX Conference, Stanford University.	Learning to solve long-horizon tasks (YouTube)	2023-11

Robot Vision and Learning Lab, UofT.	Task and motion planning with skills and language models	2023-07
Facebook AI Research.	Taskography: Evaluating robot task planning over large 3d scene graphs	2021-07
Microsoft Research.	Robot task planning in structured world models	2021-07

PROFESSIONAL SERVICE AND TEACHING

Workshop Organizing

1. “Making Sense of Data in Robotics: Challenges in Collection, Curation, and Interpretability at Scale,” held at the Conference on Robot Learning (CoRL), 2025. **Lead organizer.** [Workshop Site](#).
2. “The 2nd Workshop on Out-of-Distribution Generalization in Robotics: Towards Trustworthy AI-driven Autonomy,” held at Robotics: Science and Systems (RSS), 2025. **Supporting organizer.** [Workshop Site](#).

Additional Service

Journal Service: Reviewer for IJRR, RA-L

Conference Service: Reviewer for RSS, CoRL, CVPR, ICRA, IROS, ISER, L4DC, AeroConf

1 x Teaching assistant for Stanford Test of AI & Emerging Technologies (2026) in service of the US Air Force ([news](#))
 2 x Teaching assistant for Stanford AA174A/CS137A/EE160A (2023, 2024): Principles of Robot Autonomy 1
 1 x Teaching assistant for Stanford AA274B/CS237B/EE260B/ME274B (2025): Principles of Robot Autonomy 2

PATENTS

- Agia, C.G., Sinha, R., Yang, J., Antonova, R., Nishimura, H., Pavone, M., Itkina, M., Bohg, J. (2025). *Curating Training Data for Robot Learning Based on Influence Functions.* U.S. Patent Pending.
- Agia, C.G., Cheng, R., Ren, Y., Liu, B. (2022). *Systems and Methods for Generating a Road Surface Semantic Segmentation Map from a Sequence of Point Clouds* (U.S. Application No. 17/676,131, U.S. Patent No. 12,008,762). U.S. Patent and Trademark Office. [Google Patents link](#).
- Cheng, R., Agia, C.G., Ren, Y., Liu, B. (2022). *Methods and Systems for Semantic Scene Completion for Sparse 3D Data* (U.S. Application No. 17/492,261, U.S. Patent No. 12,079,970). U.S. Patent and Trademark Office. [Google Patents link](#).

COMMUNITY SERVICE AND LEADERSHIP

Canadian Student Association , Stanford University	2024-01 – Present
Co-founder and President of Stanford's Canadian Student Association	

Stanford AI Salon , Stanford University	2021-10 – Present
Lead Organizer of Stanford's AI Salon, a platform facilitating open-ended discussion between graduate students, industry, and academic leaders on contemporary ML & AI topics and their societal implications	

Stanford CS Mentorship Program , Stanford University	2021-10 – Present
Advising students from underrepresented and minority groups to lead fruitful careers in computer science research	

Frosh Scholars Mentorship Program , Stanford University	2021-10 – 2022-07
Mentoring first generation college students towards balanced progress in academics, career, and well-being	

Pro Bono Research Mentoring	2021-01 – Present
Guided many undergraduate research students through applications at top graduate engineering schools	

NSight Student Mentorship Program , University of Toronto	2018-09 – 2019-05
Provided academic, social, and personal support to first and second year Engineering Science students	

SKILLS

Languages: (*Proficient*) Python, C/C#/C++, MATLAB, Rust, L^AT_EX, Bash - (*Working*) Java, Assembly

Tools: Git, Linux/Unix, Unity, Docker, Wasmtime (WebAssembly), Kubernetes

Libraries: PyTorch, TensorFlow, ROS, NumPy, ml-agents, PCL, OpenCV, SciPy, scikit-learn, Pandas, Jupyter