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Abstract— Model-free reinforcement learning has become a
viable approach for vision-based robot control. However, sample
complexity and adaptability to domain shifts remain persistent
challenges when operating in high-dimensional observation
spaces (images, LiDAR), such as those that are involved in
autonomous driving. In this paper, we propose a flexible frame-
work by which a policy’s observations are augmented with
robust attention representations in the latent space to guide the
agent’s attention during training. Our method encodes local and
global descriptors of the augmented state representations into
a compact latent vector, and scene dynamics are approximated
by a recurrent network that processes the latent vectors in
sequence. We outline two approaches for constructing attention
maps; a supervised pipeline leveraging semantic segmentation
networks, and an unsupervised pipeline relying only on classical
image processing techniques. We conduct our experiments in
simulation and test the learned policy against varying seasonal
effects and weather conditions. Our design decisions are sup-
ported in a series of ablation studies. The results demonstrate
that our state augmentation method both improves learning
efficiency and encourages robust domain adaptation when
compared to common end-to-end frameworks and methods that
learn directly from intermediate representations.

I. INTRODUCTION

Can reinforcement learning (RL) one day become practical
for reliable visual navigation and autonomous driving in city
streets? Entertaining the possibility of an affirmative answer
would require, among many other desiderata: data efficiency,
robustness, as well as safe exploration and adaptation. In this
paper we focus on the first two requirements, and we argue
that in order to satisfy them we cannot rely on learning tabula
rasa. We need to augment the driving policy’s input with
informative state representations for both low-level control
and high-level decision-making. While this remark applies
to vision-based robot control in general, herein we focus on
the case of autonomous driving and 2D visual navigation.

Attempts to improve data efficiency and robustness in
RL models include the following strategies: a) reducing the
variance and complexity of observations through transform-
ing the data into representations better suited for policy
learning [1], [2], [3]; b) exploration strategies such as space
covering exploration or committed exploration [4], [5], [6];
c) improved optimization methods [7] as well as residual
learning [8]; d) attempting to learning the dynamics [9],
[10] and reward model [11], [12] to do model-based RL.
Incorporating an expert-in-the-loop to hand-pick visual state
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Fig. 1: Segmentation module is robust to changes in bright-
ness, shadows and seasonal effects. Last row shows the
attention map extracted along the segment boundaries, which
will be used to augment the policy’s input.

representations that are invariant to domain shifts and rele-
vant to the task, and using them to train robust RL policies
is the de facto approach to a). However, a straightforward
process that informs the optimal choice of representation
with respect to a task, target domain, and robotic system has
yet to be developed. Moreover, training exclusively with mid-
level representations removes the policy’s access to salient
image-space features that may be informative to the task.

In this work, we aim to accelerate policy learning and
promote robust adaptation by training with augmented visual
state representations. By partially decoupling the perception
and policy tasks during training, we enable the policy to
learn representations that maximize the task objective while
simultaneously accepting advice in the form of attention
representations provided via lightweight perception modules.
Composing the policy and expressing it as a function of an
intermediate, augmented representation achieves the desir-
able characteristics for our self-driving agent. As noted in
Rasmussen et al. [13], Frankel et al. [14]: high-level decision
making warrants highly abstracted state spaces.

The main contributions of this paper are: (a) we demon-
strate that our attention-based state augmentation technique
outperforms methods that learn in an end-to-end setup or
train directly on intermediate representations; (b) we propose
an attention model fusing semantic and spatial information
that improves learning efficiency and robustness.

By taking advantage of learning in simulation (utilizing
Airsim [15]), we generate a large dataset augmented with
permutations of weather conditions and seasonal effects to
supervise the training of the segmentation network in the
attention pipeline. Fig. 1 shows that the segmentation predic-
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Fig. 2: Model overview. The principal component of the RL pipeline is the fusion of attention maps with the agent’s feature
maps (i.e. attention augmentation) promoting sample efficiency and robust domain adaptation.

tions remain consistent across varying sources of observation
noise. Integrating depth into the pipeline allows for extremely
close or far pixel regions (e.g. immediate road surface or sky)
that distract the policy to be suppressed, drawing focus to
the static and dynamic components of the scene that pose
the main challenge for safe navigation. As an alternative
to the segmentation-based attention pipeline, we present an
unsupervised variant that offers comparable benefits to policy
learning as its supervised counterpart. The unsupervised
attention pipeline does not require any of the labels provided
by the simulator, and thus opens the possibility for prompt
deployment in real environments.

II. RELATED WORK

Data efficiency and domain adaptation. Extending RL
with deep neural networks has had remarkable success in
low-dimensional primitive control policy learning and high-
dimensional control tasks [16]. Yet, three key challenges
remain outstanding: objective specification, data hunger and
domain adaptation. Methods like policy search and pol-
icy gradient appeal to objective specification, but concerns
of sample complexity makes them unsuitable to train on
robots directly [16]. Maximum entropy inverse reinforcement
learning [17] is efficient for real robots as it decomposes
task demonstrations into hierarchies, but the assumptions on
dynamic priors makes it difficult to adapt and transfer. While
model-agnostic meta-learning improves domain adaptation, it
requires prohibitively large quantities of diverse training data.
In the visual adaptation domain, Yu et al. [18] achieved one-
shot learning with large meta-learning prior libraries learned
from diverse videos and transferred into real-robots. Zhu et
al. [16] bridge the reality gap through domain randomization.

Reinforcement learning in simulation. Learning in sim-
ulators and scaling to real-world has become the standard
procedure for robot learning in both indoor [19] and outdoor
[20] scenarios (supported by large synthetic datasets). Muller
et al. [3] employ segmentation to train a policy network for
PID control, and Zhang et al. [21] perform segmentation
adaptation by aligning label distributions from the simula-
tors’ ground truth to refine predictions in the target domain.
Sadeghi et al. [19] apply domain randomization throughout
policy learning and perform validation on indoor corridors
with structural similarities to the training dataset. Trying

to learn complex tasks from limited datasets requires data
efficiency and a well-defined model. Rather than benefit-
ing speed from off-policy correction [22] in an end-to-end
training scheme, one could leverage ground-truth semantic
annotations and depth maps (from the simulator) to train an
isolated perception module and use it to augment the agent’s
observations during the policy learning phase. We find that
decoupling visual effects from the learning agent’s encoder
achieves high data efficiency and induces domain adaptation.

Representation Learning in RL. Self-supervised state
representation learning aims to improve data efficiency
and generalization by encapsulating states into informative
latent encodings. Approaches come in two forms: task-
agnostic representation learning (reconstruction and con-
trastive regimes), and task-specific representation learning
through bisimulation metrics—prior works have been pri-
marily applied to MuJoCo and Atari control tasks [23],
[24]. Yarats et al. [25] provided a model-free off-policy
method to learn latent image encodings with a β-VAE
and optimizes it under the reconstruction and Q-learning
objectives. Zhang et al. [26] proposed Deep Bisimulation for
Control (DBC) which models the behavioural similarity be-
tween observations according to the downstream control task,
instead of optimizing for task-agnostic representations. They
apply their method on a self-driving highway control task
and show improved results over learning-from-pixels and
representation learning counterparts. However, these models
have not yet been demonstrated for self-driving control under
domain shifts in complex urban environments. Alternatively,
Yang et al. [27] models the state space as a graph embedding
based on local relationships a priori, eliminating the need to
model dynamics and requiring no explicit interaction with
the environment. While methods for modelling attention have
been explored [28], [29], their applications are constrained
to vision and primitive control tasks.

RL-based autonomous navigation. Incorporating CNN
and RNN structures in RL frameworks has advanced de-
velopment in high-dimensional, continuous-control robotic
learning domains. Notable attempts for efficient learning
of self-driving control policies from raw sensory data or
semantic representations have required pre-training data from
simulation [30], [31] or demonstrations [32], [33], which
might be of unreliable quality. Prior to that, Riedmiller et
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al. [34] showed that Neural Fitted Q-Iteration could be used
to learn to drive a real car in 20mins, however, not on image
inputs. Chen et al. [35] applied RL to run mobile robots in
crowded spaces, and Wang et al. [36] trained an RL-based
autonomous driving policy in TORCS [37] by customizing
the action space and reward function to suit the simulator.
Shalev et al. [38] modeled the autonomous driving problem
within non-MDP settings and reduced the variance of gra-
dient estimation by an option graph (temporal abstraction).
Other applications include: predicting control policies with
RNNs, using reinforcement learning to solve cross sections
of autonomous driving rather than the whole pipeline, and the
use state-action representations. Another prominent literature
by Huval et al. [39] presented an extensive analysis of deep
learning techniques for autonomous highway driving. In the
context of non-automotive navigation, Manderson et al. [40]
use a combination of model-free and model-based methods
for efficient navigation in complex domains.

III. METHODS

We aim to learn a robust driving policy from sequences
of RGB images in diverse and dynamic randomized en-
vironments. The proposed reinforcement learning system
leverages an attention model which processes each new
frame and augments the agent’s observations during training,
as illustrated in Fig. 2. We propose two attention models: a
supervised model that exploits real-time semantic segmen-
tation and depth priors as its primary building blocks, and
a fully unsupervised pipeline that replaces the segmentation
network with classical image processing techniques. Recur-
rent networks are used to capture long-horizon dynamics
from latent vectors of the agent’s augmented state. Details
of each component are provided in the following sections.

A. Attention Model

1) Supervised Pipeline: The design of our attention mech-
anism is based on results of Burr et al. [41] suggesting
that under the guidance of top-down interests (i.e. high-
level decision making), perception lies along the segment
boundaries of objects. For a single image, we construct
an attention map by inferring its class-wise segmentation,
extracting the segmentation boundaries, and scaling them by
the inverse proportion of their depths.

The attention model employs a U-Net architecture [42]
for semantic segmentation. We assume access to 3D meshes
of each object in the simulated environment and convert
them to ground truth annotations. By altering the time of
day and weather conditions, we generate a diverse dataset
with approximately 100k (2TB) training samples and vali-
date over random mini-batches of normal weather and day-
time combinations. The U-Net is trained by minimizing the
negative log-likelihood of the pixel-wise predictions over
all classes [42]. While expressing the state in semantic
form encodes topological landmarks and reduces variability,
adopting semantic segmentation as the sole perceptual input
for RL-based vehicle control is restrictive, as segmenta-
tion, along with other classical computer vision objectives,

Fig. 3: Attention pipeline. Constructs an attention map from
RGB image and depth map inputs drawing the agent’s focus
to foreground obstacles rather than background context.

abstracts-out salient image features which could enable more
performant control. Therefore, we further simplify the state
representation into a single-channel attention map, which is
of lower complexity and facilitates a simpler state augmen-
tation process (discussed in Sec. III-B). The initial step is
extracting object boundaries from the segmented image, S:

Gxy = ητ (|∇xS(x, y)|+ |∇yS(x, y)|) , ∀x, y ∈ φ (1)

τ(x) =

{
0, if x = 0

1, otherwise
(2)

Here, ∇xS and ∇yS denote first-order image gradients
applied to the segmentation map in the x and y directions,
respectively. This is implemented with an efficient bound-
ary search algorithm, which applies a convolution of two
orthogonal n× n kernels (empirically set to 6× 6 pixels) to
the map. We observe noisier predictions in local regions that
contain multiple classes, and hence, we incorporate the η
normalization term to down-weight the extracted boundaries
in such kernel regions. The resultant is a high-precision
boundary map, G, shown in Fig. 3b.

The semantic map associates edges to class categories,
allowing edges to be excluded from the boundary map
should they correspond to background classes. However, the
boundary map’s sparsity makes it unsuitable for drawing
attention to homogeneous regions of the semantic map, like
those occupied by approaching vehicles or large obstacles.
The diffusion process induces a spread of attention outwards
from the extracted boundaries, which reduces the effect of
sparsity and more accurately encodes the objects’ complete
geometry. We adopt a diffusion process based on the ADI-
method [43] and sweep for 50 iterations to acquire a diffused
boundary map denoted by G′ (illustrated in Fig. 3c).

Spatial priors reflecting the proximity of obstacles is key
to filtering foreground from background and differentiating
dynamic from static objects across time, both of which are
necessary for safety-critical navigation. Thus, we integrate
depth priors into the attention model by fusing a ground
truth disparity map (D) with the diffused boundary map after
normalizing their quantities with a sigmoid activation.
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Ux,y = σ(G′x,y) · σ(Dx,y), σ(x) =
1

1 + e−
√
x

(3)

The output is a low-dimensional attention map (U , cor-
responding to Fig. 3d) which will be used to boost sample
efficiency and policy robustness through state augmentation.

2) Unsupervised Pipeline: We also propose an unsu-
pervised variant of the attention pipeline that replaces the
semantic segmentation network and boundary extraction
layers with a traditional edge detection algorithm. This is
accomplished by sweeping a Laplacian of Gaussian kernel
(3x3) over a given image in a single convolutional layer,
diffusing the extracted boundaries and scaling them by
the inverse depth map. Since the classical edge detector
is sensitive to environmental artifacts (i.e. falling leaves,
snow), the attention maps produced through this procedure
contain slightly more noise; although, the diffusion process
offsets much of the error. The results provided in Fig. 5a
indicate that the minor effects of noise in the attention maps
are almost negligible in comparison to the full attention
model. Hence, the unsupervised attention pipeline is a viable
approach when segmentation is undesired or supervision
cannot be acquired.

B. Attention State Augmentation

The attention models emphasize navigation obstacles in
the vehicles field of view and prioritizes them based on
proximity. High-variance and the presence of distractors that
deter domain adaptation and slow convergence when learning
tabula rasa are addressed through the invariance of the atten-
tion maps across a wide range of environmental conditions.
Furthermore, the inference time of the full attention pipeline
is fast enough to apply on real robots (∼10fps on Nvidia
Jetson TX2). Although the system utilizes RGB-D sensor
data, the dependency on depth sensors could be removed by
use of off-the-shelf depth prediction networks [44], which
have shown remarkable progress in terms of accurate and
scale consistent inference in challenging domains. Note that
the training and configuration of modules in the attention
pipelines—the U-Net segmentation network, boundary ex-
traction and diffusion, and inverse depth scaling—are de-
coupled (i.e. frozen) from all other modules that learn from
sparse rewards within the reinforcement learning framework.

A used technique dubbed attention augmentation improves
upon the robustness and sample efficiency of autonomous
driving policies that learn from intermediate representations
(e.g. segmentation maps, optical flow, surface normals) [1],
[2]. Attention augmentation enables us to exploit the gen-
erated attention maps as a task-centric prior while allowing
the policy to learn representations through sparse rewards in
parallel. As depicted in Fig. 2, this technique is expressed as
an element-wise scaling of the attention map with the feature
map reconstructed by an unsupervised autoencoder, and
corresponds to augmenting the driving policy’s observation
in the latent image space. We utilize a featurized image
pyramid [45] composed of lightweight VGG16 networks

to encode both coarse and fine-grained descriptors of the
augmented state into a latent vector representative of a single
frame. Sequences of these latent states are then processed by
an LSTM to model the temporal properties of the scene.

C. Reinforcement Learning Model

In simplifying the state space via attention representations
the navigation system can effectively learn from sparse
rewards. Furthermore, evading the taxing memory costs
of learning from high-dimensional RGB images provides
a strong boost in convergence speeds, in addition to the
benefits offered by recurrent memories (LSTM) which back-
propagates rewards to batched samples in a sliding window.

Within the DQN [46] training sessions, we cast our
model into the Partially Observable Markov Decision Process
framework, which is a tuple of (S,A, Tsa, R,Ω,O, γ): state
space S, action space A, transition probabilities Tsa, reward
function R, observation space Ω, conditional observation
probabilities O, and discount factor γ. The action space is a
discrete set of throttle-steering combinations. The objective
function and policy π are expressed as:

J(π) = Eπ

[ ∞∑
t=0

γtRt|s0

]
(4)

π∗ = argmaxπJ(π) (5)

The reward function below is comprised of three compo-
nents: Rgdis provides a reward in proportion to the distance
travelled between initial state s0 and terminal state sT , Rdis
rewards precise lane following as a function of the vehicle’s
distance relative to center of the road, and Rspeed simply
encourages the agent to drive at higher speeds. In the last
term, δa penalizes the agent for frequently changing actions,
and scales the penalty by normalization constant η. λ ∈ [0, 1]
is empirically set to balance navigation quality against speed.

Rt = λ(Rgdis,t +Rdis,t) + (1− λ)Rspeed,t − ηδa (6)

For a given time step t, we define an augmented attention
state as ut, all other state parameters as kt, and the action
taken as at. The goal of the model is to estimate the Q-
function Qπw(st, at), where st = [ut, ..., ut−m, kt]. We do so
by minimizing the following loss function:

Lt(w) = E(st,at,rt,st+1)∼D[(qt+1 −Qπw(st, at))
2] (7)

qt+1 = Rt + γmax
at+1

Qπw′(st+1, at+1)

In Eq. (7), qt+1 is the target value generated by the fixed
target network weights w

′
from the previous iteration. With

the learned Q-function, the agent may then select the action
based on Q(st, at) to maximize expected rewards. As for the
policy function πθ(s) in DDPG [47] experiments, we update
the policy network weights θ with the partial derivative from
accumulated reward expectations:

∂J

∂θ
=
∂Qπ(s, a)

∂a

∣∣∣∣
a=πθ(s)

∂πθ(s)

∂θ
(8)
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(a) AirSim Neighborhood Train-
ing environment. This diverse
map offers us the essential ele-
ments for normal daily driving.

(b) Heat map of crash locations
averaged over 7 runs. Note that
we always initialize the vehicle at
the map center with randomized
orientations and goal locations.

Fig. 4: Experiment environment overview.

D. Recurrent Architecture

Our initial experiments indicated that DQN and DDPG
were able to learn effective steering and speed control
policies for a single route, but diverged through episodic
randomization. To remedy this, we represent our Q-function
as an LSTM followed by several fully-connected layers to
process the concatenated outputs of the LSTM cells. Thus,
Q-values are predicted as Q(st = [ut, ..., ut−m, kt], at),
where ut−i for i ∈ {0, ..,m} are the latent encodings of
augmented attention maps from the current and previous
time steps. This formulation enables the policy to hone-in on
the dynamical and geometrical properties of a scene across
sequential frames, rather than memorizing the state-action
mapping of single frame states.

When training the recurrent model, we utilize a batched
sliding window strategy that corresponds to the number of
LSTM units deployed. However, the strong correlation of
input samples within the sliding window scope introduces
gradient bias, thus we construct a replay buffer with five
windows truncated by time and backpropagate rewards to the
corresponding window after each batch in processed. As this
method results in over-fitting in the early stages of training,
we apply both concrete-dropout and L2 regularization.

The best results were obtained when using a single LSTM
layer with 128 memory cells. Despite the initial decrease in
learning efficiency due to model complexity, the advantage of
time-series prediction begins to gradually take effect during
training and ultimately contributes to the final convergence.

IV. EXPERIMENTAL RESULTS
We conduct our experiments on the AirSim Simulator’s

Neighborhood Environment shown in Fig. 4a and average the
results over 7 independent training iterations. Each episode
terminates when the vehicle drives safely to arrive at a
randomly generated destination a set distance away or when a
collision occurs; Fig. 4b depicts the averaged crash locations.
The average attention inference frame rate on a PC with a
GTX1080Ti graphics card is 20 ± 3fps and is reduced to
9± 4fps on an Nvidia Jetson TX2. Additional optimization
efforts would be required for real-time operation on robots
with limited computational resources. Hyperparameters for

our proposed DRL model include: 32 batch size, 1e−4

learning rate, 128 LSTM memory, 50k replay buffer, 1.0
epsilon start, 0.01 epsilon end, 100k epsilon decay steps, 0.1
epsilon decay rate, and 1k target network update interval.

A photo-realistic environment combined with a “physics
engine” (simulator) helps bridge the transfer to real-robots.
We thus focus on synthesizing a dataset with key canonical
classes of environmental perturbation, notable with images
diverse in times of day, weather condition, camera angles,
and noise (salt-and-pepper). Training the RL agent under
these conditions promotes robust behaviour when encoun-
tering objects of irregular shapes and textures in the envi-
ronment. As policy learning in randomized simulated envi-
ronments for safety-critical navigation has been previously
shown to scale up to real-world images [19], we anticipate
that our model, and more specifically, the segmentation
network will have strong transfer characteristics and only
require re-training in environments with extreme visual dif-
ferences or geometrical layouts.

Quantitative Evaluation. Fig. 5a compares our proposed
system with four baselines; two traditional RL methods,
each configured with an end-to-end architecture and with the
segmentation-based attention pipeline. The reported scaled
reward is simply the accumulated return over a training
episode. Notice that our method converges to the highest
reward lower-bound at substantially faster rates, while the
DQN and DDPG baselines which process high-dimension
RGB inputs struggle to converge and develop random ex-
ploratory behaviours. Modifying the DQN and DDPG mod-
els with our attention augmentation pipeline results in a
significant increase in lower-bound convergence, suggest-
ing that learning-from-pixels is limited in its capacity to
extract informative and compact state representations for
autonomous driving. Moreover, computing gradient updates
from randomly sampled single-state trajectories (τ ) as so:
∇wJ(w) ' 1

N

∑N
i=1

∑T
t=1∇wlogπw(τ)r(τ) leads to unde-

sired variance and learning instability. Thus, leveraging the
temporal relationships of sequential latent state encodings
with our recurrent Q-network (LSTM) leads to faster con-
vergence with reduced variance across all models.

Powered by our attention pipeline, the reinforcement
learning agent exhibits an intriguing behaviour. Particularly,
its decisions follow the path of least action, reacting to
environment changes only when objects come within a prox-
imity concerning safe navigation. With the agent focusing its
computational efforts on only attention-worthy objects, we
observe the desired smooth yet safe driving policy.

TABLE I: Scaled total reward in different test environments. Note that we average the
rewards across 20 runs in different times-of-day for each environmental category.

Scaled Average Total Reward

Model Description Configuration Leaves Fog Rain Dust Snow

DQN [46] Value Func. End-to-end 0.41 0.08 0.61 0.38 0.24
Attention Aug. 0.77 0.93 0.89 0.73 0.54

DDPG [37] Policy Grad. End-to-end 0.65 0.22 1.33 0.89 0.56
Attention Aug. 1.57 1.32 0.90 1.02 1.39

Unsupervised Hybrid Edge+LSTM-DQN 1.04 1.55 1.25 1.02 1.13
Ours Hybrid AA+LSTM-DQN 1.59 1.79 1.52 0.93 1.46
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(a) Learning efficiency (smooth scale: 0.92) of our method against
baselines. The plots are averaged over 7 runs with different random
seeds (error bars indicate 1-σ) and identical hyperparameters. Here,
AA refers to Attention Augmentation.

(b) Ablation study: Contribution of each individual component in
our model averaged over 7 runs. Notice the oscillations without
attention maps, as learning from segmentation as an intermediate
representation is subject to higher variance.

Fig. 5: Experimental results overview.

We further compare the robustness of our model to the
baselines by training all models in bright day-time condi-
tions, then evaluating their performance in challenging and
unseen conditions. The results in Table. I show the perfor-
mance improvement of our proposed method across most
weather conditions and the notable increase in robustness
when applying attention augmentation to the baselines. We
also notice a slight drop in performance when traditional
edge detection is employed instead of semantic segmentation
boundaries in scenes rich of distractors. In more standard
conditions, these two methods perform equivalently.

TABLE II: Ablation study of our architecture. Return reflects the mean reward obtained
on 10 episodes with a horizon of 10,000 steps. Results are averaged over 7 runs.

Model DQN Depth Seg. AM AAM FIM LSTM Return

Baseline X 0.238
DQN + Depth X X 0.219
DQN + Seg. X X 0.343
DQN + AM X X 0.439
DQN + AAM X X 0.627
DQN + AAM + FIM X X X 0.611
DQN + AAM + FIM + LSTM X X X X 0.655
AM: Attention Map
AAM: Augmented Attention Map
FIM: Featurized Image Pyramid, pretrained VGG 16 ConvNet

Ablation Study. The ablation study presented in Table. II
emphasizes the contribution of each individual component
in our system by excluding all but one component and
evaluating its effect on self-driving performance. The results
indicate that state augmentation with robust attention maps is
approximately twice as effective in comparison to learning-
from-pixels or mid-level representations.

V. FUTURE WORK
The performance of the proposed model is attributed to

attention augmentation; accuracy of the attention represen-
tations depend primarily on the deep segmentation network
which lacks interpretability (black-box in nature). Such de-
pendencies reduce the robustness of the overall system, and
thus, future work includes diversifying the input signals, us-
ing segmentation as one of several auxiliary methods to more

robustly produce high-level representations. In addition, re-
liance on ground-truth depth maps can be circumvented with
depth prediction networks. We also expect an increase in
learning efficiency by adopting modern imitation learning or
inverse RL techniques. We aim to explore and potentially
integrate them, as they open up promising opportunities to
solve complex robotic tasks in an effective manner.

VI. CONCLUSION
In this paper, we investigated the effect of augmented

attention representations on robustness and efficiency in
deep reinforcement learning for the task of autonomous
robot navigation; more specifically, self-driving in simulated
urban environments. We proposed an efficient pipeline that
abstracts RGB image features into an attention map, which
is used to augment the policy’s observations during training.
By encoding the augmented feature maps into multi-scale
latent vectors and aggregating them across several frames
with an LSTM, the agent is induced to act upon the un-
derlying dynamics of the environment without disregarding
global context. Our results illustrate a notable improvement
over common end-to-end architectures that do not explicitly
model state representations, operating on high-dimensional
images and consuming potentially redundant or unrelated
representations which burdens efficiency and produces learn-
ing ambiguity. We showed that these attention maps can be
constructed either with or without supervision, opening the
possibility for deployment in the field.
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