
Depth Prediction for Monocular Direct Visual Odometry

Ran Cheng

Computer Science
McGill University

ran.cheng2@mail.mcgill.ca

Christopher Agia

Engineering Science
University of Toronto

christopher.agia@mail.utoronto.ca

David Meger

Computer Science
McGill University

david.meger@mcgill.ca

Gregory Dudek

Computer Science
McGill University

gregory.dudek@mcgill.ca

Abstract—Depth prediction from monocular images with
deep CNNs is a topic of increasing interest to the community.
Advances have lead to models capable of predicting disparity
maps with consistent scale, which are an acceptable prior for
gradient-based direct methods. With this in consideration, we
exploit depth prediction as a candidate prior for the coarse
initialization, tracking, and marginalization steps of the direct
visual odometry system, enabling the second-order optimizer
to converge faster into a precise global minimum. In addition,
the given depth prior supports large baseline stereo scenarios,
maintaining robust pose estimations against challenging motion
states such as in-place rotation. We further refine our pose
estimation with semi-online loop closure. The experiments on
KITTI demonstrate that our proposed method achieves state-
of-the-art performance compared to both traditional direct
visual odometry and learning-based counterparts.

Keywords-depth prediction; visual odometry; deep learning;
visual SLAM;

I. INTRODUCTION

Direct methods [1][2][3] have received more attention in

recent years after the popularization of global shutter and

high resolution cameras. Direct image alignment, such as

optical flow and its variants, optimize a photometric error

to estimate camera ego-motion and are well known for

their speed and precision. Feature is not required for such

methods, and thus, they are able work in feature deficient

environments (even on pure gradient images). However, the

inclusion of original images in the photometric loss function

greatly increases the degree of non-convexity, which is fatal

to gradient-based direct methods. Moreover, photometric

consistency is a very strong assumption that is not guar-

anteed in practice.

Many models have been proposed to increase the ef-

ficiency and robustness of direct methods. Illumination-

robust cost [4] and rigid body mutual information [5]

have been proposed to compensate for drastic illumination

changes between frames. The photometric calibration model

[6] has been employed as a service to estimate camera

exposure time, gamma reaction, and vignette to adapt for

auto-exposure cameras. Further, the adoption of reprojection

residual patterns have been shown to smooth the photometric

error manifold, quickening the rate of convergence for

gradient-based optimization.

(a) Ours (b) DSO [3]

Figure 1: Example mapping results on KITTI seq 05. Direct

visual odometry with the depth prior information compared

to DSO. Our method successfully maintains constant scale

and precision when estimating camera poses for in-place

rotations. Note the apparent scale-drift of DSO.

During initialization, LSD-SLAM [2] and DSO [3] per-

form an exhaustive search on a set of empirical predefined

initial poses. This bulky initialization process deteriorates the

real-time performance of these systems. In addition, without

prior depth or pose information the optimizer typically

initializes the inverse depth and pose with identity matrices,

constructing one large arrow shaped Hessian matrix from

them before solving their delta updates jointly. As the pixel

depth and camera pose are initially coupled, one degree of

freedom is left in the nullspace [3], causing the optimizer

to converge to an arbitrary scale at each initialization. The

lack of global constraints (e.g. loop closure) in the tracking

thread (local bundle adjustment) allows for estimation error

to accumulate, which ultimately drifts the scale of both pose

and depth estimates [7].

Deep learning based methods have demonstrated remark-

able progress on maintaining consistent scale for both depth

prediction and camera pose estimation. It is noteworthy to
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Figure 2: CNN-DVO pipeline.

mention that the majority of deep learning models are actu-

ally predicting inverse depths (disparity maps). With proper

scaling, we can seamlessly feed this inverse depth prior into

the depth filter module in the direct visual odometry system.

This addition can aid in reducing of scale-drift for successive

tracking and mapping tasks.

In this work, we present a real-time monocular visual

odometry system with an auxiliary deep depth predictor.

Since applying the Schur complement for marginalization is

equivalent to solving the marginal distribution over camera

pose given a depth prior, the joint optimization can thus be

broken down into two stages: a) solve the pose from coarse

prior and b) correct depth from the pose given by stage a).

Unlike Zhao et al. [8] and Loo et al. [9] that only use depth

for direct image alignment or to regularize the depth filter,

we also incorporate the depth priors into the tracking and

marginalization backend. We argue that the use of a deep

network predicted pose to initialize direct image alignment

is unnecessary, since the decoupled pose can be recovered

from a coarse depth prior efficiently. In the ablation study of

this paper, the pose network initializer is shown to provide

only minor improvements to our final results. Inspired by

LDSO [10], we divide the direct visual odometry problem

into two main parts: coarse tracking and map refinement.

Instead of performing global photometric bundle adjustment,

we select keyframes based on marginalization results, and

form a pose graph with the BoW database (Bag of Words) of

ORB features extracted from each keyframe. These corner

features are uniformly selected from the image space to

ensure that the mapped points can be reproduced in a later

frame for proper loop closure. In summary, our contributions

can be listed as the following:

• We present a unified monocular direct visual odome-

try framework that incorporates deep CNN predicted

depths as a prior for initialization, local bundle adjust-

ment optimization, and loop closure (Fig. 2), mitigating

the effects of scale-drift for pose estimation and map

building.

• An enhanced point selection strategy (Fig. 3) that more

evenly samples tracking points in the image space

to reduce the clustering of points near high gradient

regions and promote robustness of pose estimation to

extreme motion states such as in-place rotations.

• We demonstrate that the introduction of depth priors

achieves high accuracy during large scale tracking

sequences in a public dataset compared to state-of-the-

art direct methods.

II. RELATED WORKS

A substantial fraction of the scale estimation error can be

attributed to a lack of physical constraints available to VO

systems. This deficiency is often remedied by integrating

more sensors into the system - for instance, an IMU which

provides constraints in the form of inertial measurements.

The stereo version of DSO [11] and inertial measurement

[12] have substantially improved the estimations. However,

the cost of adding a new sensor and the multiple signal

alignment makes their deployment infeasible for mobile

robots with limited hardware.

Attempts to solve visual odometry with the help of deep

learning methods have received more and more attention.

SfMLearner [13] started the unsupervised architecture to

estimate image depth and camera pose based on back-

warping amongst consecutive image frames. DVSO [14]

then developed the same idea on left-right warping and

generated virtual stereo pairs to estimate monocular depth

and camera poses. Yet the lack of normalization in their

depth predictions increased the likelihood of divergence.

DDVO [15] addressed this issue in their model by normal-

izing the output of the depth CNN before feeding it into

the loss function. Furthermore, they tried to integrate the

direct image alignment backend and the depth estimation

pipeline to jointly optimize their pose and depth networks

which were coupled with a shared encoder. Monodepth2

[16] further investigated the occlusion effect and adopted a

coarse-to-fine trick by predicting depth and pose in different

scale spaces. All the above methods propose an independent

pose network to produce the consecutive frame warping

transformation matrix; generalizability of the pose network

remains an issue regardless of the training procedure, which

is not the case with traditional visual odometry methods.

Consequently, DDSO [8] and CNN-SVO [9] turned-in to

utilize the depth prediction results from a deep CNN to

help initialize the visual odometry system, and then use

traditional geometric methods to estimate camera poses.

Note that while the initialization plays an important part

in VO systems, scale-drifts will still carry on during the

tracking thread. Both DDSO and CNN-SVO assume that the

predicted depths are accurate across the whole image, but

in actuality, depths predicted at further distances tend to be
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noisy. This uncertainty can be problematic, as the relatively

long life span of distant map points more heavily contribute

to pose estimation in a local sliding window. In this work,

we carefully model uncertainty and propose an uncertainty-

aware inverse depth variance propagation and fusion.

III. METHOD

We start with the complete pipeline (Fig. 2) of our CNN-

DVO in Sec. III-A, and briefly illustrate our depth estimation

model in Sec. III-B for initialization, tracking and loop

closure in Sec. III-C, Sec. III-D and Sec. III-E, respectively.

A. Complete Pipeline

We begin by resolving the challenge of photometric cali-

bration and highlight our method’s fully online estimation of

all required parameters, whereas the traditional DSO algo-

rithm provides minor updates to pre-determined calibration

values. We next expand upon our strategy for selecting

the initial tracking points in the system. Point selection is

a fundamental component of any DVO system and holds

a strong bearing on initialization and tracking robustness.

Gradient-based direct methods favor the selection of points

in high gradient regions, such as corners and edges, as they

contribute more to the photometric reprojection error, and

thus, can boost the efficiency of bundle adjustment. How-

ever, the potential clustering of points near these corner or

edge-like features may expose the system to high estimation

error when most high gradient features are grouped in the

same sub-section of a given image (Fig. (7) of [3]).

To reduce estimation error under such circumstances, we

propose a new point selection strategy that incorporates

dynamic upsampling and downsampling of points in multi-

scale rectangular sub-sections of the image. After generating

initial tracking points with the DSO point selection method,

we slide kernels of size 2x, where x ∈ {2, 3, 4, 5}, across

the image. We compute a histogram of gradients within the

region defined by a given kernel at a given pixel location.

Points are randomly discarded at lower-gradient pixel lo-

cations if the region is dense in points. Otherwise, points

are randomly selected in higher-gradient pixel locations if

the region is sparse. The final set of tracking points for an

image is the union of all points kept or selected from each

kernel at each pixel location. Our method considers a more

even spread of points while maintaining point density near

high gradient features (as shown in Fig. 3).

We adopt the keyframe based sliding window approach to

estimate the local camera poses and refine the sparse depth

maps. Within the local sliding window, the SE(3) keyframe

pose and inverse depth are parameterized and composed into

a minimization problem as formulated in [10], Eq. (1). A

central idea of our paper is the proposed use of a deep CNN

predicted depth in the current camera image to estimate

camera pose in the next frame. We utilize the pre-trained

Figure 3: Top image is the original RGB input, middle image

demonstrates our point selection result (colored by distance),

bottom image shows the DSO point selection result. For

visualization purposes, we drop all points selected in the

unused upper section of the image where the predicted

depths are noisy.

Monodepth2 [16] model as our depth predictor which helps

to refine the pose estimation as shown in Fig. 2.

By continuously propagating depth into each tracking

frame and refining it in the local bundle adjustment, we can

easily lock down the inverse depth variance upper bound. We

perform Gauss-Newton optimization for each selected point

to refine the optimal reprojection locations in the new frame

and recover the new inverse depth in the epipolar line [17].

Given the inverse depth prior, the search interval is limited

by d± 2σd where d is the inverse depth, σd is the standard

deviation which is initially set as linear combination of the

inverse depth prior [9] and observation variance [17].

σ2
d = λ(

d′

6
)2 + (1− λ)σ2

d,obs (1)

Here λ is the weight (empirically set to 0.54), d′ is the

predicted inverse depth from the deep CNN, and σ2
d,obs is

defined in Eq. (10) [17]. The empirical setting provides

adequate room for noisy depth predictions to converge.

We incorporate the depth prior into our photometric

equation as a depth residual, which penalizes the deviations

in inverse depth between keyframes, and properly scales

the estimated transformations between them. The residual

in turn is defined as:

rid = (Ij [p
′(Ti, Tj , d

′, c)]− bj)− tje
aj

tieai
(Ii(p)− bi) (2)

Where Ti, Tj are camera poses, d′ is the depth prior, c is

camera intrinsic, ai, aj , bi, bj are affine brightness coeffi-

cients. Ii, Ij are two keyframes, p′ in Ij are projected points
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from p in Ii given the transformation above. The windowed

optimization part is similar to DSO; please refer to Section

2.3 in [3] for implementation details.

In loop closure, we extract the BRIEF descriptors on

each keyframe and maintain a bag-of-word database for

loop detection query, then initialize the transformations by

applying RANSAC PnP, and optimize the Sim(3) trans-

formation through 3D-2D geometric constraints. We only

update the optimized pose in the front-end thread (visualizer)

to avoid corrupting the local sliding window by modifying

the backend pose graph, and to keep the tracking thread

running efficiently.

A notable feature of our method is the ability to recover

the scale of absolute pose constraints between the loop

candidate and the current frame. During global pose opti-

mization, we fix the pose estimations of all reference frames

and apply the aggregated correction transformation updates

only in the front-end visualizer. Since the pose Hessian prior

is carried on in each frame in the local sliding window,

modifying the pose in the backend will corrupt the local

windowed bundle adjustment, and thus, for thread safety

and tracking robustness, the global map optimization only

occurs upon manual triggering or when tracking concludes.

B. Deep CNN depth estimation

Monocular depth estimation has been well explored by

the vision community and many existing methods show

impressive results in public datasets such as KITTI and

CityScapes. We use pretrained Monodepth2 [16] checkpoints

which have been fine-tuned for KITTI raw stereo data

and perform the real-time depth inference on GPU (∼20

ms). The predicted depth priors are disparity maps, which

are analogous to inverse depth scaled by focal length and

baseline. In practice, the disparity maps were scaled by 0.1

to ensure numerical stability.

We observed relatively high estimation errors from the

deep CNN at mid-to-long distances as depicted in Fig 4.

This is a result of predicting disparity maps (equivalent to

inverse depth map), where long range pixel-wise depths are

encoded as small decimal valued inverse-depths (disparities)

which contribute very little to the final loss. This source

of high estimation error is prevalent in many methods that

predict disparity maps [16][13][15], and is not the case in

supervised learning approaches that use ground truth depth

labels.

Furthermore, the low disparity of the sky usually leads to

noisy depth estimates from the deep CNN in those regions.

This noise may corrupt the depth prior, and hence, we crop

all images enabling the pipeline to operate on the bottom

∼70% of each image, as illustrated in Fig. 3. We use

the finely predicted parts of images to initialize the depth

filter and to track map points - this process is thoroughly

explained in the follow sections.

10

20

Figure 4: Top image is the original RGB input, middle

image is the dense depth predicted from Monodepth2 and is

bilinear upsampled by 2x, bottom image is the depth error

between predicted dense depth map and successfully tracked

map points. The depth error is in meters.

C. Depth estimation for initialization

We employ a depth filter to initialize our inverse depth

estimation for each selected immature point. We express the

optimal inverse depth as a function of our depth prior and

geometrical projection inputs:

d∗ = d(I0, I1, d
′, ξ, π) (3)

Here d∗ is the optimal inverse depth, d′ is the inverse depth

prior defined in Eq. (1), ξ is the relative transformation

matrix and π is the projection function containing intrinsic.

The error variance σ2
d∗ is thus given by:

σ2
d∗ = α2

(
cd + cd

JdΣJd + J ′dΣJ
′
d

JdΣJd
+ σ2

d

)
(4)

Where cd is the normalization constant (empirically set to

0.2), Jd is the Jacobian of d (Jd = [dx, dy]T , as shown in

Fig. 5), J ′d is the conjugate Jacobian of d: J ′d = [dx,−dy]T ,

Σ is the 2×2 input-error covariance (Σ = [Ix, Iy]
T [Ix.Iy]),

α is defined in Eq. (11) in [17], and σd is defined in Eq. (1).

We initialize our given inverse depth prior to N (d′, σ2
d), and

perform a Gauss-Newton optimization to shrink the inverse

depth upper bound for each candidate map point:

rid =
∑
i∈Pi

||I1[π(pi, d, ξ)]− eaI0(pi) + b||γ (5)

Here rid is the inverse depth residual, γ is huber norm, Pi

is the residual pattern, π, d and ξ are defined in Eq. (3),

a, b are affine coefficients defined in Eq. (2). Likewise, the
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Figure 5: The uncertainty propagation of inverse depth. f
is the focal length, I∗ are the images, d′ is the inverse

depth prior, σ2
d is the inverse depth variance, σ2

d∗ is the

optimal inverse depth variance. dx and dy are search region

dimensions on the epipolar line. The depth prior narrows

the search region and makes our method tenable to large

baseline stereo problems, depicted in Fig. (3) of [17] (i.e.

strong rotation motions exemplified in Fig. (7) of [11])

Jacobian of inverse depth can be derived as implemented in

[3]:

Jid = Ixdx + Iydy (6)

Where Ix, Iy are image gradients at a given pixel location.

dx and dy are the search region dimensions along the

epipolar line, as shown in Fig. 5.

Since the parameterized inverse depth is a scalar, the

Hessian of the inverse depth and error term are also scalars:

Hid = J2
id, bid = −Jidrid, respectively. The optimal pixel

coordinate p will be updated through p∗ = p− b
H , and the

inverse depth is consequently recovered from p according to

the projection equation in [2]. Note that the optimizer will

converge into the optimal pixel coordinate with respect to

the inverse depth, thus, the inverse depth can be recovered

from the projection equation as illustrated in [18].

Not only does the depth prior shrink the range of the

search in the epipolar line, but it also initializes the starting

point in the neighbourhood of the local minimum which

increases the convergence rate of the second-order optimizer.

Further, the observation variance fused from the depth prior

can then be propagated to new frames to infer the new

inverse depth and camera pose.

D. Depth propagation for tracking

Ideally, the predicted depth from the deep CNN should

be precise everywhere. However, we observe that the error

near high gradient areas such as object boundaries are often

quite large, despite the introduction of an edge-aware term

in the commonly used smoothness loss. This extra noise

is modelled in the inverse depth variance of new tracking

frames, once the camera position of the frame has been

estimated. The new inverse depth d′1 is defined as:

d′1(d1, d
′) = N

(
σ2
d1
d′ + σ2

d′d1

σ2
d1

+ σ2
d′

,
σ2
d1
σ2
d′

σ2
d1

+ σ2
d′

)
(7)

where d1 and σd1
are defined in Eq. (14) and Eq. (15)

from [17]. Note that this is equivalent to the update step

in a Kalman filter where the noisy observation N (d′, σ2
d′) is

fused with the geometrical propagation prior N (d1, σ
2
d1
).

E. Depth prediction for marginalization and loop closing

We build our the loop closure and pose optimization

backend from LDSO [10] and feed in the extra depth prior

measurements.

Since we already have the converged inverse depths of

active map points in the library, along with a strongly

estimated depth prior from the deep CNN, the constraints

are performed only on 3D-3D correspondence; the Sim(3)
transformation can be cast into SE(3) by scaling the trans-

lation part by the depth prior. Hence, the cost function is

simplified to:

Eloop =
∑
qi∈Q

||Π(ScrΠ
−1(pi, dpi

))−Π−1(qi)||2 (8)

Where pi is the reconstructed feature point in the loop

candidate, d∗ is the inverse depth of active map points in

the corresponding frame, Q are the matched features in

the current keyframe, Π and Π−1 are the projection and

backward projection functions, and Scr is the target Sim(3)
constraint to be estimated from the cost function above.

However, storing each keyframe and their tracked map points

in the global mapping database is a heavy burden on the

system in terms of time and memory. To avoid this, we

follow the keyframe selection trick in S-PTAM [19]: with

a current pose estimated in the sliding window, a frame is

selected to be a keyframe if the tracked feature points consist

of less than 90% of those from the previous keyframe in the

pose graph.

We apply marginalization for three tasks: (a) to solve

camera poses, (b) eliminate outlier map points, and (c)

remove redundant keyframes. Note that the Jacobians of

geometrical parameters ((Ti, Tj , d, c)) with respect to two

frames’ poses are linearly related. The big Hessian matrix

can be decomposed into two parts: one pose Hessian which

is very small, one point Hessian vector which is a large

vector containing all the inverse depth Jacobians in each
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Sequence
Absolute Pose Error (APE) Relative Pose Error (RPE)

Method Max Mean Min Rmse Std Max Mean Min Rmse Std

seq 00

DSO [3] 239.06 101.12 4.05 118.28 61.34 5.08 0.61 0.00 0.72 0.39
SDSO [11] 26.47 7.34 0.57 9.34 5.78 1.75 0.10 0.00 0.19 0.16
LDSO [10] 28.53 11.95 2.49 13.45 6.17 0.87 0.09 0.00 0.11 0.06

CNN-SVO [9] 64.41 17.66 4.07 20.11 9.63 2.26 0.09 0.00 0.15 0.12
Ours 14.66 3.57 0.10 4.55 2.83 4.26 0.08 0.00 0.23 0.22

seq 02

DSO 308.07 100.73 6.76 125.05 74.10 7.12 0.50 0.00 0.61 0.35
SDSO 11.62 5.22 0.32 5.81 2.56 0.88 0.07 0.00 0.11 0.09
LDSO 121.45 27.96 3.47 34.92 20.91 3.64 0.09 0.00 0.15 0.12

CNN-SVO 84.03 45.80 21.85 48.25 15.17 7.39 0.58 0.01 0.74 0.47
Ours 23.11 10.05 4.01 10.98 4.41 0.50 0.05 0.00 0.06 0.04

seq 05

DSO 174.91 55.78 10.95 65.11 33.58 3.25 0.46 0.00 0.57 0.34
SDSO 26.61 7.46 0.17 8.97 4.98 2.87 0.10 0.00 0.21 0.19
LDSO 13.53 3.80 1.04 4.25 1.90 0.58 0.05 0.00 0.07 0.04

CNN-SVO 33.59 10.77 0.69 12.22 5.77 2.39 0.09 0.00 0.20 0.18
Ours 7.06 2.81 1.00 3.09 1.27 0.48 0.06 0.00 0.08 0.05

seq 06

DSO 146.81 76.08 3.41 83.63 34.72 5.81 0.48 0.01 0.64 0.43
SDSO 9.50 4.29 0.60 4.89 2.35 1.64 0.08 0.00 0.14 0.12
LDSO 24.99 11.20 0.71 13.27 7.11 0.58 0.12 0.00 0.15 0.09

CNN-SVO 220.98 71.30 22.59 81.73 39.95 6.18 0.89 0.09 1.15 0.73
Ours 7.58 4.57 0.92 4.82 1.52 1.05 0.11 0.01 0.15 0.10

seq 07

DSO 64.96 19.33 0.36 23.43 13.23 0.98 0.25 0.01 0.32 0.19
SDSO 4.16 2.18 0.39 2.35 0.89 0.95 0.08 0.00 0.13 0.10
LDSO 47.98 17.58 4.52 20.10 9.74 2.43 0.20 0.01 0.27 0.19

CNN-SVO 11.35 3.31 0.37 4.05 2.33 1.04 0.07 0.00 0.10 0.08
Ours 0.66 0.42 0.13 0.44 0.13 0.53 0.04 0.00 0.06 0.04

seq 09

DSO 164.56 57.58 3.11 68.21 36.57 11.24 0.32 0.00 0.48 0.36
SDSO 10.85 3.93 0.72 4.50 2.18 1.27 0.09 0.00 0.15 0.12
LDSO 165.46 64.18 4.45 75.80 40.34 1.25 0.31 0.01 0.37 0.20

CNN-SVO 27.59 13.23 3.88 14.69 6.38 4.49 0.28 0.01 0.52 0.44
Ours 13.85 4.26 1.49 4.90 2.42 0.36 0.05 0.00 0.06 0.04

Table I: Quantitative results of trajectory APE and RPE evaluated on KITTI dataset. Note that DSO and LDSO are scaled

and Sim(3) aligned with ground truth trajectories. Evaluation results on seq 01, 03, 04, 10 are not listed since the trajectories

are too short and lack rotations. Above results are averaged over 5 experiments of each method.

entry. The pose Hessian is aggregated through each point

Hessian as follows:

Ĥξ =
∑
i∈Pg

{Hξ −Hξ,pi
H−1

pi
Hpi,ξ} (9)

b̂ξ =
∑
i∈Pg

{bξ −Hξ,pi
H−1

pi
bpi
} (10)

After the linear aggregation, the pose update δ can be

solved from:

δ = Ĥξ
−1

b̂ξ (11)

and then used to update the current state: ξ′ = δ + ξ. Note

that the plus operation here is defined in Lie manifold. In

practice, Hξ,pi
= JξJpi

is stored as a vector of Jacobians

where each Jacobian entry corresponds to a point, and

is aggregated to solve Ĥξ, where Jξ is the Jacobian of

camera pose. According to Eq. (6), the Jacobian of points

(parameterized as inverse depth) is defined as:

Jpi = fx(t1−ut3)Ix
d′T (pi)
d′R(pi)

+ fy(t2− vt3)Iy
d′T (pi)
d′R(pi)

(12)

Where fx(t1−ut3), fy(t2−vt3) are proportional to dx, dy
defined in Eq. (6), u, v are pixel coordinates in the target

frame and t is the relative translation between the reference

frame and target frame, and d′R and d′T are inverse depth

priors from the reference frame and target frame. Note that

these depth priors are used to initialize the Jacobian of points

following the First Estimation Jacobian trick [20], as we

assume the depth Jacobian is smooth within the local tangent

space of current parameter state.

The inverse depth in turn will be updated for each point

in the host frame based on the optimized camera pose ξ′:

δpi = H−1
pi

(bpi −HT
ξ,pi

ξ′) (13)

For each point pi, the inverse depth dnew[pi] is thus updated

by dnew[pi] = d′R[pi]+δpi . Here, d′R[pi] is the inverse depth

of point pi in the reference frame, and d′T = d′1 is defined

in Eq. (7). The removal of marginal points and frames are

expressed in Eq. (17) to (19) in [3].

IV. EXPERIMENT

In this section, we demonstrate our experimental results

evaluated on the odometry dataset of the KITTI Vision

Benchmark [21]. Our depth estimation and dense local bun-

dle adjustment are performed on a Nvidia RTX 2080 max-Q

GPU. Feature extraction and the loop closure (implemented

with G2O [22]) are all done by CPU (Intel Core i7-8750H)

running at 2.6 GHz with 16 GB RAM. The input image

resolution is 1241 × 376, all images are pre-rectified. Depth

inference takes additional time on CPU (125 ± 50 ms), but
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can run faster on GPU (20 ± 10 ms), which makes our GPU-

based implementation run in real-time on a laptop computer.

(a) Seq 00 (b) Seq 05

Figure 6: Sample trajectory comparison in KITTI dataset

with our CNN-DVO method. Trajectories for each method

are averaged over 5 runs.

Ablation study: Using the KITTI Odometry Benchmark,

we show the effect of each design decision of our system.

Table II contains the results of our approach without incorpo-

rating depth priors into the pipeline, without integrating loop

closure for pose optimization, and while using a predicted

pose prior for initialization.

Starting with our contribution, our experiments show that

the inclusion of depth priors helps to progressively reduces

scale-drift over long sequences by restricting the reprojection

of tracking points in the local bundle adjustment near the

global minimum. The remaining accumulated estimation

errors can then be further corrected with pose optimization

through loop closure. We find that initializing our system

with a predicted pose prior provides a relatively small

accuracy boost on select sequences, but on average, does

not improve the performance of the system.

Table II: Ablation study of major components - ATE (m)

on all KITTI training sequences. Experiments are averaged

over 7 runs of each sequence.

Seq Ours
Ours Ours Ours

CNN-SVO
w\o DP∗ w\o LC∗ w\ PP∗

00 4.55 118.28 13.45 9.34 130.03
01 9.79 9.71 10.48 6.79 202.36
02 10.98 125.05 34.92 5.81 48.24
03 1.05 2.33 2.99 1.25 3.26
04 0.52 0.98 1.12 0.38 2.10
05 2.23 65.11 4.25 8.97 20.39
06 3.04 83.63 13.27 4.89 12.50
07 0.44 23.42 2.10 2.35 4.05
08 4.51 116.85 6.48 6.49 10.65
09 4.90 68.21 5.80 4.50 14.69
10 1.49 13.68 7.68 1.20 8.74

mean 3.96 57.02 9.14 5.00 41.55

w\o DP∗: without depth prior (Sim(3) scale aligned).
w\o LC∗: without loop closure for pose optimization.
w\ PP∗: with pose prior for initialization.

Comparison with state-of-the-art: As presented in Table

I, we evaluate our CNN-DVO method along with state-of-

Figure 7: Processing time needed to map sequence 05 from

the KITTI Vision Benchmark. See Fig. (1) for the final

mapping result.

the-art direct visual odometry methods like DSO, LDSO,

CNN-SVO and stereo DSO for comparison on all sequences

from the KITTI Odometry training set (sample trajectories

in Fig. 6). Since DSO and LDSO are initialized in arbitrary

scale, we perform Sim(3) alignment with the ground truth

trajectories over the entire set of keyframes for evaluation

consistency. In some experiments, we demonstrate better

performance than Stereo DSO (sequences containing a lot

of strong rotation motion). Since our point selection strategy

more evenly samples points across the global image, the

tracking thread is less affected by the frequent removal of

outliers. Also, the fast depth initialization of new tracking

points constrains the scale of the pose Hessians marginal-

ization and regularizes the pose delta update close to the

parameter tangent space.

Runtime evaluation: Since we estimate the depth in low-

resolution, it takes roughly 0.05s for each frame. A signif-

icant amount of time is also saved by running the system

with fewer tracking points (increased sparsity). The overall

runtime is slightly slower than DSO, but the initialization

process is faster. Fig. 7 shows the processing time required

for sequence 05 from the KITTI Vision Benchmark. Note

that the inference for depth priors are done on our GPU;

the average inference time is 23 ms. Our tracking pipeline

operates at ∼15 FPS, while LDSO runs at ∼13 FPS, DSO

at ∼28 FPS, and CNN-SVO at ∼14 FPS. For the front-end

pose update with loop closure, we operate at ∼3 FPS, with

LDSO slightly quicker at ∼4 FPS.

V. CONCLUSION

In this paper, we present a novel deep learning powered

direct visual odometry system. To our knowledge, it is

the only direct formulation that fully integrates depth pre-

diction with every major system component (initialization,

tracking, marginalization) to jointly optimize for all model

parameters including inverse depth, camera pose and affine

model in real-time (with GPU-based implementation). Extra

constraints given by the depth prior provides strong benefits

to our system, as it a) fixes the arbitrary initialization scale

into constant scale, b) it greatly restrains the scale-drift
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during tracking, and c) it recovers the 3D correspondence

of the measurements in loop closure while helping to

maintain consistent scale. We also propose an improved

point selection strategy to sample points near both low and

high gradient image regions to avoid clustering, rendering

our tracking thread more adaptable to large baseline stereo

problems (e.g. in-place rotation). We have demonstrated that

our approach achieves state-of-the-art results on the KITTI

Odometry Benchmark.

In the future, we aim to extend our pipeline to include self-

supervised fine-tuning of the deep CNN depth predictor. This

can be achieved by employing a sparse-to-dense network to

reconstruct a dense depth map from the newly optimized

sparse depths after local bundle adjustment. To this end,

we hope to bridge the current optimization framework

with depth refinement to maintain precise pose and depth

estimations in new and challenging domains.

Code and supplementary information is available at:

http://www.cim.mcgill.ca/∼mrl/ran/crv2020
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