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Abstract: With the increasing reliance of self-driving and similar robotic systems
on robust 3D vision, the processing of LiDAR scans with deep convolutional neu-
ral networks has become a trend in academia and industry alike. Prior attempts
on the challenging Semantic Scene Completion task - which entails the inference
of dense 3D structure and associated semantic labels from ”sparse” representa-
tions - have been, to a degree, successful in small indoor scenes when provided
with dense point clouds or dense depth maps often fused with semantic segmen-
tation maps from RGB images. However, the performance of these systems drop
drastically when applied to large outdoor scenes characterized by dynamic and ex-
ponentially sparser conditions. Likewise, processing of the entire sparse volume
becomes infeasible due to memory limitations and workarounds introduce com-
putational inefficiency as practitioners are forced to divide the overall volume into
multiple equal segments and infer on each individually, rendering real-time perfor-
mance impossible. In this work, we formulate a method that subsumes the sparsity
of large-scale environments and present S3CNet, a sparse convolution based neu-
ral network that predicts the semantically completed scene from a single, unified
LiDAR point cloud. We show that our proposed method outperforms all coun-
terparts on the 3D task, achieving state-of-the art results on the SemanticKITTI
benchmark [1]. Furthermore, we propose a 2D variant of S3CNet with a multi-
view fusion strategy to complement our 3D network, providing robustness to oc-
clusions and extreme sparsity in distant regions. We conduct experiments for the
2D semantic scene completion task and compare the results of our sparse 2D net-
work against several leading LiDAR segmentation models adapted for bird’s eye
view segmentation on two open-source datasets.

Keywords: Sparse Convolution, Semantic Scene Completion, Autonomous Driv-
ing, Deep Learning

1 Introduction

Scene understanding is a challenging component of the autonomous driving problem, and is consid-
ered by many as a foundational building block of a complete self-driving system. The construction
of maps, the process of locating static and dynamic objects, and the response to the environment dur-
ing self-driving are inseparable from the agent’s understanding of the 3D scene. In practice, scene
understanding is typically approached by semantic segmentation. When working with sparse Li-
DAR scans, scene understanding is not only reflected in the semantic segmentation of the 3D point
cloud but also includes the prediction and completion of certain regions, that is, semantic scene
completion. Scene completion is the premise of 3D semantic map construction and is a hot topic in
current research. However, as semantic segmentation based on 2D image content has reached very
mature levels, methods that infer complete structure and semantics from 3D point cloud scenes,
which is of significant import to robust perception and autonomous driving, are only at preliminary
development and exploration stages. Limited by the sparsity of point cloud data and the lack of
features, it becomes very difficult to extract useful semantic information in 3D scenes. Therefore,
the understanding of large scale scenes based on 3D point clouds has become an industry endeavor.
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Figure 1: Semantic Scene Completion on SemanticKITTI Dataset.

Semantic segmentation and scene com-
pletion of 3D point clouds are usually
studied separately [2, 3], but with the
emergence of large-scale datasets such as
ScanNet [4] and SemanticKITTI [1], re-
searchers have discovered a deep inter-
twining of an object’s semantics with its
underlying geometry, and since, have be-
gun exploiting this with the joint learn-
ing of semantic segmentation and scene
completion to boost model performance
[5]. For instance, speculating that an ob-
ject occluded by vehicles and surrounded
by leaves is a trunk simplifies the task of inferring it’s shape. Conversely, inferring the shape of a
pole-like object forms a prior on it’s semantic class being a trunk rather than a wall. While previous
semantic scene completion methods built on dense 2D or 3D convolutional layers have done well
in small-scale indoor environments, they have struggled to maintain their accuracy and efficiency
in outdoor environments for several reasons. For one, dense 2D convolutional methods that thrived
in the feature rich 2D image space are no longer sufficient when tackling large and sparse LiDAR
scans that contain far fewer geometric and semantic descriptors. Furthermore, the dense 3D convo-
lution becomes extremely wasteful in terms of computation and memory since the majority of the
3D volume of interest is in fact empty. Thereby, our main contributions are listed as the following:
(a) a sparse tensor based neural network architecture that efficiently learns features from sparse 3D
point cloud data and jointly solves the coupled scene completion and semantic segmentation prob-
lem; (b) a novel geometric-aware 3D tensor segmentation loss; (c) a multi-view fusion and semantic
post-processing strategy addressing the challenges of distant or occluded regions and small-sized
objects. Given a single sparse point cloud frame, our model predicts a dense 3D occupancy cuboid
with semantic labels assigned to each voxel cell (as shown in Fig. 1), generating rich information of
the 3D environment that is not contained in the original input such as gaps between LiDAR scans,
occluded regions and future scenes.

In order to effectively complete occluded voxel regions from LiDAR scans, we focus on exploiting
the geometrical relationship of the 3D points both locally and globally. In this work, we utilize
point-wise normal vectors as a geometrical feature encoding to guide our model in filling the gaps
according to the object’s local surface convexity. We also leverage a LiDAR-based flipped Truncated
Signed Distance Function (fTSDF [5]) computed from a spherical range image as a spatial encoding
to differentiate free, occupied and occluded space of a scene. As for future scenes, because these
regions are far from the vehicle and are primarily road or other forms of terrain, we propose a 2D
variant of the sparse semantic scene completion network to support the construction of the 3D scene
via multi-view fusion with Bird’s Eye View (BEV) semantic map predictions. To tackle sparsity, we
leveraged the Minkowski Engine [6], an auto-differentiation library for sparse tensors to build our 2D
and 3D semantic scene completion network. We have also adopted a combined geometric inspired
semantic segmentation loss to improve the accuracy of semantic label predictions. Since our network
is trained in a complex real-world autonomous driving dataset with 20 classes of dynamic and static
objects, and the input data is simply a voxelized LiDAR point cloud appended with geometrical and
spatial feature encodings, our model can be deployed on-the-go with various LiDAR sensors. We
demonstrate this by applying our method to unseen real-world voxel data, which yields reasonable
qualitative results. Our experiments show that our model outperforms all baseline methods by a large
margin, with exceptional performance in the prediction of small, under-represented class categories
such as bicycles, pedestrians, traffic signs and more.

2 Related Works

We review the related works across four major areas: volume reconstruction, point cloud segmenta-
tion, semantic scene completion, and multi-view fusion.

Volume Reconstruction. There are several approaches to inferring complete volumetric occupancy
of shapes and scenes from partial or sparse geometric data. Efficient methods based on object
symmetry [7, 8] and plane fitting [9] apply for small non-complex completion tasks. In larger
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scenes with irregular objects, the former are supplanted by methods that fit 3D mesh models to
object instances based on the local scene geometry [2, 10, 11, 12]. Yet, a lack of diversity within the
3D model library often leads to incomplete reconstruction, and expanding the library slows down
retrieval. Attempts to simplify the process to 3D bounding box fitting neglects the local geometry of
objects [13, 14]. Other studies process grid-octree data with CNNs to predict high resolution outputs
[15, 16], but are tailored to reconstructing individual objects rather than entire scenes.
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Figure 2: Full system pipeline.

Point Cloud Segmentation. A variety
of methods segment range images con-
structed by spherical projection of a point
cloud with deep networks, and back-
project the predicted semantic classes
onto the corresponding points in 3D
space [17, 18, 19]. The small sized range
image tensor that these methods oper-
ate on leads to unparalleled speed, but
∼ 25% of the original point cloud is un-
recoverable after the initial spherical pro-
jection. Alternative approaches project
point clouds onto a bird’s eye view per-
spective, computing pillar features (vox-
els) from 3D points to construct a BEV map and process it with deep CNNs [20, 21]. Another
emergent stream aims to segment point clouds by hierarchically extracting features from the 3D
points directly to capture local and global context of the scan [22, 23]. While these methods have
had reasonable success, they are typically an order of magnitude slower than their non-direct coun-
terparts.

Semantic Scene Completion. Most mainstream methods are built on small indoor scenes with
dense depth maps or dense point clouds, which effectively reduces the impact of sparseness on
scene completion. The representative methods are SSCNet [5] and ScanNet [4]. Their approach
transforms dense depth maps into a volumetric TSDF signal and passes it through a dense 3D net-
work. Extensions are made in TS3D [24] by incorporating semantic segmentation from RGB images
into the construction of the input TSDF volume. In outdoor scenes, these methods are limited by
the vast increase in sparsity and their network architectures that predict at reduced voxel resolu-
tions. Improvements are made in SATNet [25], which maintains high output resolution with a series
of dilated convolutional modules (TNet) to capture global context, and propose configurations for
early and late fusion of semantic information. Behley et al. [1] produced a state-of-the-art system
by integrating semantic priors from color images and LiDAR segmentation with the TSDF volume,
and adopting a TNet network backbone. However, their memory intensive design requires users to
infer on 6 equal parts of the input before fusing the semantic completed partial scenes, deterring
potential real-time usage. Furthermore, the dependence on color images introduces instability in the
overall system under low-light and poor weather conditions. Therefore, the design of a semantic
scene completion method based solely on 3D point cloud data is motivated by the need for faster
inference speeds, a smaller memory footprint, and robustness to extreme conditions.

Multi-view Fusion. Fusing semantic and geometric features across various view-points and di-
mensions has been explored for a variety of tasks. Several of the aforementioned semantic scene
completion methods demonstrate the lifting of image-space semantic labels into 3D space [24, 25].
Similarly, Hane et al. [26] proposed a joint optimization strategy for semantic image segmentation
and scene reconstruction, using the completed 3D scene as a geometric prior on the corresponding
image pixels to enforce spatially consistent segmentations. Extensions were made to support city-
scale reconstruction at reasonable memory costs with an adaptive multi-resolution model [27]. Dai
and Nießner [28] designed an 2D-3D network that fuses semantic features from RGB-D images with
a differential backprojection layer, achieving multiple view-point reconstruction in indoor settings.
Meanwhile, SLAM-based approaches [29] aim to produce temporally consistent reconstructions by
tracking motion states over sequential frames and mapping predicted semantics into 3D space.
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3 Method

We describe our methods for LiDAR-based semantic scene completion in large outdoor driving
scenes. After a brief system overview, we present our unique procedure for computing key spatial
features from an input LiDAR scan, the detailed design of our networks, fusion module and refine-
ment module, and a novel loss function incorporating a geometric-aware 3D segmentation loss.

3.1 System Pipeline

The entire system pipeline is shown in Fig. 2. From a single LiDAR scan, we construct two sparse
tensors that encapsulate the scene into memory efficient 2D and 3D representations. Each tensor is
passed through their corresponding semantic scene completion network, 2D S3CNet or 3D S3CNet,
to semantically complete the scene in the respective dimension. We propose a dynamic voxel fusion
method to further densify the reconstructed scene with the predicted 2D semantic BEV map (de-
tailed discussion in Section 3.3). This offsets the significant memory demands on the 3D network
- exponential sparsity growth in 3D space makes it difficult to complete classes at range. Using a
sparse tensor spatial propagation network [30], we refine the semantic labels in noisy regions of the
fused 2D-3D predictions.

3.2 Spatial Feature Engineering
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Figure 3: Sparse 3D tensor features.

Sparse 2D Feature. We define the sparse 2D ten-
sor as the set of non-empty pillars approximating
the point distribution along the x-y plane (BEV).
Each pillar, pi,j , is a 7-dimensional vector encod-
ing the mean, minimum, and maximum heights
and intensities of points within the voxel, and the
point density; all values are normalized.

Sparse 3D Feature. The sparsity of the raw point
cloud makes it difficult to extract spatial features,
and thus, we transform it into a range image via
spherical projection. As the quality of extracted
spatial features are sensitive to noise, we retrieve
a smooth range image by performing dynamic
depth completion using the dilation method of
Ku et al. [31]. This enables robust extraction of
a 3-dimensional normal surface feature for each
pixel that is reversely assigned to the points in 3D
space. Further, we maintain a memory efficient
sparse 3D tensor by modifying the sign-flipped TSDF approach of Song et al. [5], and compute
TSDF values from the smooth range image, storing only the coordinates within the truncation range
of existing LiDAR points. All other features for TSDF generated coordinates are zero-padded.

3.3 Network Architecture

We adopt the Minkowski Engine [6] as our sparse tensor auto-differentiation framework to build the
entire system. A sparse tensor can be defined as a hash-table of coordinates and their corresponding
features: x = [Cn×d,Fn×m]. Here, n are the number of non-empty voxels, d and m are the
dimension of coordinates and features, respectively. The sparse convolutional layer is thus:

xu =
∑

i∈ND(uu,K,Cin)

Wixu+i for u ∈ Cout (1)

Where K is the kernel size and ND(u,K, Cin) are the set of offsets that are at most d 12 (K − 1)e
away from u, the current coordinate. Unlike the conventional convolution, this generalized convo-
lution (introduced by Choy et al. [6] et al) suits generic input and output coordinates, and arbitrary
kernel shapes. It allows extending a sparse tensor network to extremely high-dimensional spaces

4



and dynamically generating coordinates for generative tasks. The arbitrary input shape and multi-
dimensional support enables us deploy the same network layout in different dimensional spaces.
Hence, our 2D and 3D networks share the same set of network components (built off sparse convo-
lution, transposed convolution and pooling layers) with differing coordinate dimensions.
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Figure 4: S3CNet network architecture. Example target masks are vi-
sualized as target s2-16.

After extracting the features as described in Sec-
tion 3.2, we create the sparse 3D tensor by vox-
elizing the point cloud and extracting the coordi-
nates and features of non-empty or TSDF gener-
ated points. If multiple points occupy the same
voxel, their features are averaged. The voxel
resolution is 0.2m in each dimension; this ap-
plies to the sparse 2D tensor as well. The spa-
tial extent of our predictions in the x-y-z di-
rections are [0m, 51.2m], [-25.6m, 25.6m], [-
2m, 4.4m], respectively. Discretizing the volume
yields a [256, 256, 32] sized tensor, upon which
our sparse 3D network will predict the set of oc-
cupied coordinates and a probability distribution
over the 20 possible semantic categories.
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Figure 5: Diagrams that illustrate how to calculate
the local geometric anisotropy and gradient for a
given prediction label voxel grid.

As illustrated in Fig. 4, our 3D network is assembled from four
primary building blocks: encode, decode, dilation, and spa-
tial propagation. We implement a squeeze re-weight (SR) [18]
layer to model inter-channel dependencies and improve gen-
eralization. Each encoder block contains a context aggregation
module (CAM) [17] which captures context in a large receptive
field, improving robustness to dropout noise. We adapt these
modules for sparse tensor support, and observe improvements
to both the segmentation and completion tasks. The decode
blocks utilize sparse transposed convolutions capable of gen-
erating new coordinates with the outer product of the weight
kernel and the input coordinates. As new coordinates in 3D
are generated by the cube of the kernel size, we preserve mem-
ory with pruning modules that remove redundant coordinates
throughout scene completion - training supervision is provided
by ground truth filter masks (Fig. 4, target s2-16). The di-
lation block features a sparse atrous spatial pyramid pooling
(ASPP) module to trade-off accurate localization (small field-
of-view) with context assimilation (large field-of-view), our di-
lation rates are [2,3,4]. The spatial propagation block contains
two parts, 3D spatial propagation module and guidance convo-
lution network. The guidance network produces affinity matrices used to guide the spatial propaga-
tion network to deform the sparse tensor into a desired 3D shape.

Loss function. When training our 2D network, we accomplish healthy BEV completion and bal-
anced learning of under-represented class categories by combining pixel-wise focal loss, weighted
cross entropy loss. Per-voxel binary cross entropy loss is used to train the pruning modules.

L2D(p, y) = −(α
C∑
c∈C

wcyclog(pc) + β

C∑
c∈C

yc(1− pc)γ log(pc)) + ωLBCE(p, y) (2)

Here, p is the predicted label and y is the ground truth label. The weighting factors α, β, and ω
are empirically set to 0.5, 0.5, and 1, respectively. We define a novel loss function to train our 3D
network. It consists of a completion term (voxelized binary cross entropy) and a geometric-aware
3D tensor segmentation loss. The two terms are balanced by an λ constant empirically set to 0.35.

L3D(p, y) = λLcompletion(p, y) + (1− λ)LGA(p, y) (3)

5



The completion loss is expressed below, where LBCE is the binary cross entropy loss over volumet-
ric occupancy. Note that this is applied to train the pruning modules at various scale spaces.

Lcompletion(p, y) =
∑
i,j,k

LBCE(pijk, yijk) (4)

Below is the geometric-aware 3D tensor segmentation loss computed over the final output tensor.

LGA(p, y) = −
1

N

∑
i,j,k

C∑
c=1

(ξ + ηMLGA)yijk,clog(pijk,c) (5)

2D Prediction

3D Prediction

Figure 6: Birds eye view 2D results com-
pared with 3D predictions.

The terms MLGA, ξ and η describe signals computed from the same
local cubic neighborhood of a given coordinate (As shown in Fig. 5).
The Local Geometric Anisotropy defined by Li et al. [32], MLGA =∑K
i=1 (cp ⊕ cqi), is a discrete smoothness promoting signal that pe-

nalizes the prediction of many classes within a local neighborhood.
Although it ensures locally consistent predictions in homogeneous re-
gions (i.e. road center, middle of a wall), it may incorrectly divert
the model from inferring boundaries between separate objects. We
thus introduce η, which accounts for the local arrangement of classes
based on the volumetric gradient, and downscales MLGA when the
neighborhood contains structured predictions of different classes. To
smoothen-out the loss manifold, we include a continuous entropy sig-
nal ξ = −

∑
c∈C′ P (c)log(P (c)), where P (c) is the distribution of

class c amongst all classes C ′ in the local neighborhood.

Eq. (5) thus decomposes into two multiplicative factors with the cross-
entropy loss which explicitly models the relationship between a pre-
dicted voxel and it’s local neighborhood. Intuitively, the smooth local entropy term, ξ, down-scales
the loss in easily classified homogeneous regions, enabling the network to attend to non-uniform re-
gions (e.g. class boundaries) as learning progresses. However, a measure of non-uniformity alone is
insufficient in that non-uniform regions should be more heavily penalized if the predicted neighbor-
hood lacks structure. This motivates the inclusion of ηMLGA which also considers spacial arrange-
ment of classes and down-scales the loss in structured cubic regions. In combination, we acquire a
smooth loss manifold when the local prediction is close to the ground truth as well as uncluttered,
with sharp increases when the local cubic neighbourhood is noisy and far off from the ground truth.
This speeds up convergence while reducing the chance of stabilizing in local optimums.

Multi-view Fusion and Spatial Propagation.

The task of 2D semantic scene completion is far less complex than it’s 3D counterpart because it
does not account for the local structure of objects along the z dimension, relegating the task to
semantic filling in the bird’s eye view plane. This allows our sparse 2D network to more easily
understand the global distribution pattern of semantic classes even at far distances, yielding accurate
predictions of roads, terrain, and side walks. When confronted with heavy noise or occlusions, such
as Fig. 6, our 3D model may lack the confidence to complete certain regions. To remedy this, we
express the predicted 3D tensor as a stack of BEV images, and attempt to fill in each empty voxel
with the corresponding prediction in the 2D network. The lifting algorithm operates as follows: (1)
split the 3D volume into layers along the z-dimension (32 layers in this application); (2) locate the
slice with the maximum occurrence of the desired class; (3) fill each voxel with the associated 2D
pixel prediction if there exists such a class in the voxel’s n × n (n = 3) neighborhood, otherwise
attempt to fill in the above voxel until the highest layer is exceeded; (4) repeat for all classes. Hence,
by lifting the 2D voxel-wise semantic completion into 3D space, we improve both completion and
segmentation metrics of the 3D task at minimal cost. To mitigate any additional post-fusion noise,
we apply a spatial propagation network that refines the segmentation results in 3D space.
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Figure 7: Qualitative results of predictions on SemanticKITTI test sequences. Best viewed in color.

4 Experiments

We evaluate our system on the SemanticKITTI dataset [1], which contains 8,728 voxelized LiDAR
scans and the corresponding ground truth labels. We use the public train/val/test split defined in
the SemanticKITTI API, and provide qualitative visualizations of our predictions. For evaluation
metrics, we follow [5] using mean IoU over positive classes and binary per-voxel completion IoU.
Experiments are deployed on Nvidia GP100 GPUs (16GB Graphic RAM); we use two GPUs per
model and train for 50 epochs each. The average inference time for 3D S3CNet is 0.5s (frame
with 40,000±500 points), and training requires around 120 hours. For 2D S3CNet, the average
inference time is 0.05s resulting in 50 training hours. The training scheme for the best performing
2D and 3D models are: (3D) Adam optimizer, 0.0025 learning rate, 0.0005 weight decay, and (2D)
SGD optimizer, 0.001 learning rate, and 0.0005 weight decay. Both experiments also incorporate an
exponential learning rate scheduler with a decay rate of 0.9 every 10 epochs.
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Figure 8: 2D qualitative results.

Qualitative Results. Fig. 9 depicts the inferences of
our system on three SemanticKITTI test set samples
and the corresponding RGB images. We notice that
our method correctly captures most classes with ex-
ceptional detail and consistency, including small object
categories like people and traffic signs in challenging
scenes. The middle column highlights an open intersec-
tion scene with heavy front-facing occlusion, compli-
cating the task of inferring distant mid-intersection ve-
hicles. For 2D S3CNet, we demonstrate the prediction
and ground truth BEV map in static scenes and dynamic
scenes with moving vehicles (as shown in Fig. 8).
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Ours 0.295 (1) 0.45 (5) 0.42 (6) 0.22 (6) 0.17 (6) 0.07 (4) 0.52 (1) 0.31 (3) 0.06 (2) 0.415 (1) 0.45 (1) 0.16 (1) 0.39 (5) 0.34 (1) 0.21 (6) 0.45 (1) 0.35 (1) 0.16 (1) 0.31 (1) 0.31 (1) 0.24 (1)
JS3C-Net 0.238 (2) 0.56 (1) 0.64 (1) 0.39 (1) 0.34 (1) 0.14 (1) 0.394 (2) 0.33 (1) 0.072 (1) 0.14 (2) 0.08 (2) 0.12 (2) 0.43 (1) 0.19 (5) 0.40 (1) 0.08 (2) 0.05 (2) 0.00 (2) 0.30 (2) 0.18 (3) 0.15 (3)

gjt 0.21 (3) 0.54 (2) 0.61 (4) 0.36 (2) 0.32 (2) 0.06 (5) 0.38 (3) 0.32 (2) 0.05 (3) 0.02 (3) 0.03 (4) 0.07 (4) 0.39 (4) 0.18 (6) 0.34 (3) 0.04 (3) 0.01 (4) 0.00 (3) 0.27 (3) 0.15 (6) 0.12 (4)
ifelse 0.183 (4) 0.51 (3) 0.63 (2) 0.31 (3) 0.27 (3) 0.14 (2) 0.29 (6) 0.29 (5) 0.039 (6) 0.00 (5) 0.00 (5) 0.00 (5) 0.40 (2) 0.21 (3) 0.34 (2) 0.00 (5) 0.00 (5) 0.00 (5) 0.25 (4) 0.19 (2) 0.06 (5)

jbehley [1] 0.177 (5) 0.50 (4) 0.62 (3) 0.31 (4) 0.23 (5) 0.06 (6) 0.34 (4) 0.30 (4) 0.04 (5) 0.00 (5) 0.00 (5) 0.00 (6) 0.40 (3) 0.21 (2) 0.33 (4) 0.00 (5) 0.00 (5) 0.00 (5) 0.24 (5) 0.16 (4) 0.06 (6)
yanx27 0.17 (6) 0.41 (6) 0.43 (5) 0.28 (5) 0.26 (4) 0.10 (3) 0.29 (5) 0.26 (6) 0.05 (4) 0.00 (4) 0.04 (3) 0.09 (3) 0.35 (6) 0.20 (4) 0.28 (5) 0.02 (4) 0.07 (3) 0.00 (4) 0.23 (6) 0.16 (5) 0.16 (2)

Source: https://competitions.codalab.org/competitions/22037

Table 1: SemanticKITTI Test Set Benchmark. (∗) is the prediction IoU rank.

Model mIoU
SK NS

HDUNet [20] 0.1486 0.2777
PointSeg [18] 0.1204 0.2317

SSv2 (w/o CRF) [17] 0.1294 0.1718
DBLiDARNet [19] 0.1682 0.2382

SalsaNext [33] 0.1780 0.2715
Ours 0.27003 0.3032

Table 2: 2D S3CNet quantitative results and com-
parison to state-of-the-art on SemanticKITTI vali-
dation set (SK) and nuScenes test set (NS). [34])

Quantitative results. Our primary results are shown in Table.
1, where we compare our overall system to several state-of-the-
art methods in the SemanticKITTI test set benchmark. Note the
approaches without citations are non-published works. At the
time of writing our proposed S3CNet considerably outperforms
all others, achieving a mean IoU score of 29.5% (a +23.9%
improvement on the previous leading method) and a +66.6%
over the baseline method [1]. For 2D S3CNet, we conduct extra
experiments on the nuScenes dataset [34]. Ground truth 2D
semantic scenes are created from object bounding boxes and
cropped HD map data, and aligned with LiDAR frames at an
identical spatial extent and voxel resolution to SemanticKITTI. We produced 1,166,187 frames of
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valid LiDAR scan and semantic scene label pairs and we split the train, validation, test into a 14:3:3
ratio. The total training time of our 2D S3CNet for 50 epochs on the nuScene dataset is∼350 hours.
Table. 2 shows that our 2D S3CNet outmatches several well-known LiDAR segmentation baselines
(adapted for BEV predictions) on the segmentation component of the SSC task, with comparable
results on the completion component for both the SemanticKITTI and nuScenes datasets.

Ablation study. We investigate the individual contribution of all components in our system. As
shown in Table. 3, we conduct various experiments on the 2D and 3D SSC task by modifying or
removing core components of the system and track the resulting effect on mean IoU and completion
IoU scores on the SemanticKITTI validation set. For both the 2D and 3D networks, we observe
a mean IoU drop after removing the CAM and SR modules. Since the decode blocks are mainly
responsible for completion, removing SR modules results in a more severe drop in completion IoU
compared to CAM which are only present in the encoder. Eliminating spatial features decreases
overall performance by a large amount; the system losses geometric priors that guide completion
and spatial priors that distinguish free from occluded space. Adopting Lovasz-softmax achieves
the highest mean IoU increase, since it directly optimizes for the mean IoU metric (Jaccard index).
In our experiments, focal loss combined with binary cross entropy loss provides no performative
advantage over the baseline weighted cross entropy loss for both the 2D and 3D networks. Post-
processing modules like Multi-view Fusion and Spatial Propagation Network demonstrate very high
contribution to the final results - without MVF the system performance degrades to that of the focal
loss baseline. A key distinction between MVF and SPN is the comparative impact of MVF on
completion IoU to the SPN on segmentation mean IoU, respectively.

Dimension Model Features Losses MVF SPN Data Aug. mIoU (val) Completion IoU (val)Normal TSDF LGA (Ours) WeightedCE focal Lovasz BinaryCE
3D Full Model X X X X X X X 0.3308 0.5712
2D X X X X - - X 0.2789 0.7032
3D w/o CAM X X X X X X X 0.2974 0.5833
2D X X X X - - X 0.2803 0.6880
3D w/o SR X X X X X X X 0.3005 0.5455
2D X X X X - - X 0.2604 0.6097
3D w/o Feature X X X X X 0.2795 0.4345
2D X X - - X 0.2518 0.6597
3D Lovasz-softmax X X X X X X X 0.3012 0.5934
2D X X X X - - X 0.2633 0.6089
3D Focal Loss (baseline) X X X X X X X 0.2853 0.5319
2D X X X X - - X 0.2403 0.7136
3D w/o MVF X X X X X X 0.2780 0.4430
2D - - - - - - - - - - - -
3D w/o SPN X X X X X X 0.2493 0.4902
2D X X X X - - X 0.2303 0.6736

Table 3: Ablation study on 2D and 3D S3CNet models and core system components.

Data augmentation. To increase model robustness, we integrate a series of data augmentation
techniques into the training of our 2D and 3D networks. For both 2D and 3D tasks we apply uniform
random cropping and dropout to the LiDAR point cloud, as well as uniform random translation of
±0.1m in all three dimensions. On the 2D datasets, random rotations of ±45◦ are applied only on
the yaw angle, however, we apply random rotation of ±10◦ on any two of the three Euler angles
(roll, pitch, yaw) at a time when training the 3D model.

5 Conclusion

In this paper, we presented a Sparse Semantic Scene Completion Network, S3CNet, capable of effi-
ciently reconstructing large outdoor scenes and predicting semantic voxel-wise labels from a single
LiDAR scan. To complement S3CNet, we designed a novel geometric-aware sparse tensor segmen-
tation loss that promotes class-consistent predictions in homogeneous regions while encouraging
locally structured multi-class segmentations along object boundaries. In combination with Multi-
View Fusion and Spatial Propagation post-processing modules, our method achieves state-of-the-art
results on the SemanticKITTI test set benchmark by a large margin. We also adapt several leading
LiDAR segmentation networks as baselines for 2D semantic scene completion, and demonstrate that
the 2D variant of S3CNet outperforms these baselines on two large-scale datasets. Furthermore, we
include a detailed ablation study highlighting the contribution of each individual component to the
overall system. Future work holds the extension of our sparse tensor method to real-time speeds with
improved performance across the board, additional investigation on useful spatial feature encodings,
and a learning-based multi-view fusion technique to enable end-to-end learning.
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6 Appendix A: Extra Qualitative Results

We present additional qualitative results on the SemanticKITTI training set. As we can see in Fig.
9, our model well captures both completion and semantic segmentation characteristics of different
scenes. Because a single ground truth label was constructed from LiDAR scans across several time
steps (in order to densify the scene), dynamic objects were filtered out to avoid labelling noise. For
instance, in the bottom-right most sample, while the bus was filtered out of the ground-truth scene,
our well engineered features enabled our model to detect the object with the correct class label.
Another example of this is visible in the top-right most sample, where our model detects a moving
bicyclist in front of a vehicle. These object labels are learned from static scenes, but are successfully
inferred in dynamic scenes which reflects positively on our model’s generalization ability.

NuScenes 2D qualitative results: we project the 2D semantic BEV map back to 3D lidar points
according the respective x and y coordinates, and overlay the semantic point cloud data on the rgb
images to show the model’s qualitative results. As we can see from Fig. 10, our predictions cover
most of the road surface and precisely detects vehicles, pole-like objects and pedestrians.

7 Appendix B: Experiment Configurations

We provide the training scheme for all 2D experiments in Table. 4, which includes the adapted
LiDAR segmentation baselines that have undergone multiple optimization iterations to achieve the
stated results on the SemanticKITTI and NuScenes datasets. Note that all experiments use identical
input data and augmentation configurations; changes only occur to the model, the loss function,
optimizer, scheduler, and supporting hyperparameters - much of which are based on the training
scheme proposed by the original works.

We also list our experiment configurations including the loss function, hyperparameters, sched-
uler, and provide the best validation mean IoU for all 3D model experiments (see Table. 5). We
implemented a list of state-of-the-art methods (not currently on the SemanticKITTI benchmark)
[5][35][36][32] and trained them on the SemanticKITTI dataset for 50 epochs. Amongst the com-
petitors, our model achieved the best mean IoU on the validation split (sequence 08).
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Figure 9: Qualitative results of S3CNet in SemanticKITTI dataset.
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Scene 1
Scene 2

Scene 11

Road Vehicle Truck Side walk Pole-like Object

Scene 4
Scene 61

Person

Figure 10: 2D (BEV map) Semantic scene completion qualitative results in NuScenes dataset.
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Model Loss Function Optimizer Scheduler Rates

HD-UNet [20] Weighted CE SGD Step

lr = 0.01-0.02
dr = 0.1
m=0.9
wd=0

PointSeg [18] Weighted CE Adagrad Step

lr = 0.005
dr = 0.1
m=0.9

wd=0.0005

SSv2 [17] Focal Loss SGD Step

lr = 0.01
dr = 0.1
m=0.9

wd=0.0001

DBLiDARNet [19] Weighted CE Adam None lr = 0.0001
wd=0.0005

SalsaNext [33] Weighted CE + Lovasz Softmax SGD Exp

lr=0.05
dr=0.01
m=0.9

wd=0.0001

Ours Focal Loss + Weighted CE + BCE SGD Exp

lr=0.001
dr=0.01
m=0.9

wd=0.0005
lr: learning rate
dr: decay rate
m: momentum
wd: weight decay

Table 4: Training configurations for 2D Semantic Scene Completion models on SemanticKITTI and
NuScenes datasets.

Model Loss Function Optimizer Scheduler Rates Best mIoU

SSCNet [5] Weighted CE SGD Step

lr = 0.01

0.182dr = 0.1
m=0.9
wd=0.0005

AICNet [35] Weighted CE SGD Step

lr = 0.015

0.215dr = 0.1
m=0.9
wd=0.0005

DDRNet [36] Weighted CE SGD Exp

lr = 0.02

0.193dr = 0.1
m=0.9
wd=0.0001

PALNet [32] Position Importance Aware Loss SGD Exp

lr = 0.02

0.255dr = 0.05
m=0.9
wd=0.0001

Ours Geo-Aware Loss + Binary Cross Entropy SGD Exp

lr = 0.025

0.303dr = 0.1
m=0.9
wd=0.0001

lr: learning rate
dr: decay rate
m: momentum
wd: weight decay

Table 5: Training configurations for 3D Semantic Scene Completion models in SemanticKITTI
dataset.
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